scispace - formally typeset
Search or ask a question

Showing papers in "Monthly Notices of the Royal Astronomical Society in 2013"


Journal ArticleDOI
TL;DR: In this article, a multi-epoch abundance matching (MEAM) model was proposed to determine the relationship between the stellar masses of galaxies and the masses of their host dark matter haloes over the entire cosmic history from z � 4 to the present.
Abstract: We present a new statistical method to determine the relationship between the stellar masses of galaxies and the masses of their host dark matter haloes over the entire cosmic history from z � 4 to the present. This multi-epoch abundance matching (MEAM) model self-consistently takes into account that satellite galaxies first become satellites at times earlier than they are observed. We employ a redshift-dependent parameterization of the stellar-to-halo mass relation to populate haloes and subhaloes in the Millennium simulations with galaxies, requiring that the observed stellar mass functions at several redshifts be reproduced simultaneously. We show that physically meaningful growth of massive galaxies is consistent with these data only if observational mass errors are taken into account. Using merger trees extracted from the dark matter simulations in combination with MEAM, we predict the average assembly histories of galaxies, separating into star formation within the galaxies (in-situ) and accretion of stars (ex-situ). Our main results are: The peak star formation efficiency decreases with redshift from 23 per cent at z = 0 to 9 per cent at z = 4 while the corresponding halo mass increases from 10 11.8 M⊙ to 10 12.5 M⊙. The star formation rate of central galaxies peaks at a redshift which depends on halo mass; for massive haloes this peak is at early cosmic times while for low-mass galaxies the peak has not been reached yet. In haloes similar to that of the Milky-Way about half of the central stellar mass is assembled after z = 0.7. In low-mass haloes, the accretion of satellites contributes little to the assembly of their central galaxies, while in massive haloes more than half of the central stellar mass is formed ex-situ with significant accretion of satellites at z < 2. We find that our method implies a cosmic star formation history and an evolution of specific star formation rates which are consistent with those inferred directly. We present convenient fitting functions for stellar masses, star formation rates, and accretion rates as functions of halo mass and redshift.

1,327 citations


Journal ArticleDOI
TL;DR: In this article, a new comprehensive model of the physics of galaxy formation designed for large-scale hydrodynamical simulations of structure formation using the moving mesh code AREPO is presented.
Abstract: We present a new comprehensive model of the physics of galaxy formation designed for large-scale hydrodynamical simulations of structure formation using the moving mesh code AREPO. Our model includes primordial and metal line cooling with self-shielding corrections, stellar evolution and feedback processes, gas recycling, chemical enrichment, a novel subgrid model for the metal loading of outflows, black hole (BH) seeding, BH growth and merging procedures, quasar- and radio-mode feedback, and a prescription for radiative electro-magnetic (EM) feedback from active galactic nuclei (AGN). The metal mass loading of outflows can be adjusted independently of the wind mass loading. This is required to simultaneously reproduce the stellar mass content of low mass haloes and their gas oxygen abundances. Radiative EM AGN feedback is implemented assuming an average spectral energy distribution and a luminosity-dependent scaling of obscuration effects. This form of feedback suppresses star formation more efficiently than continuous thermal quasar-mode feedback alone, but is less efficient than mechanical radio-mode feedback in regulating star formation in massive haloes. We contrast simulation predictions for different variants of our galaxy formation model with key observations. Our best match model reproduces, among other things, the cosmic star formation history, the stellar mass function, the stellar mass - halo mass relation, g-, r-, i-, z-band SDSS galaxy luminosity functions, and the Tully-Fisher relation. We can achieve this success only if we invoke very strong forms of stellar and AGN feedback such that star formation is adequately reduced in both low and high mass systems. In particular, the strength of radio-mode feedback needs to be increased significantly compared to previous studies to suppress efficient cooling in massive, metal-enriched haloes.

803 citations


Journal ArticleDOI
TL;DR: In this article, the effects of self-interacting dark matter (SIDM) on the density profiles and substructure counts of dark matte r halos from the scales of spiral galaxies to galaxy clusters are studied.
Abstract: We use cosmological simulations to study the effects of self-interacting dark matter (SIDM) on the density profiles and substructure counts of dark matte r halos from the scales of spiral galaxies to galaxy clusters, focusing explicitly on mod els with cross sections over dark matter particle mass σ/m = 1 and 0.1 cm 2 /g. Our simulations rely on a new SIDM N-body algorithm that is derived self-consistently from the Boltz mann equation and that reproduces analytic expectations in controlled numerical experiments. We find that well-resolved SIDM halos have constant-density cores, with significantly lowe r central densities than their CDM counterparts. In contrast, the subhalo content of SIDM halos is only modestly reduced compared to CDM, with the suppression greatest for large hosts and small halo-centric distances. Moreover, the large-scale clustering and halo circular vel ocity functions in SIDM are effectively identical to CDM, meaning that all of the large-scale successes of CDM are equally well matched by SIDM. From our largest cross section runs we are able to extract scaling relations for core sizes and central densities over a range o f halo sizes and find a strong correlation between the core radius of an SIDM halo and the NFW scale radius of its CDM counterpart. We construct a simple analytic model, based on CDM scaling relations, that captures all aspects of the scaling relations for SIDM halos. Our results show that halo core densities in σ/m = 1 cm 2 /g models are too low to match observations of galaxy clusters, low surface brightness spirals (LSBs), and dwarf spheroidal galaxies. However, SIDM with σ/m ≃ 0.1 cm 2 /g appears capable of reproducing reported core sizes and central densities of dwarfs, LSBs, and galaxy clusters without the need for velocity dependence. Higher resolution simulations over a wider range of masses will be required to confirm this expectation. We discuss constraints arising from the Bullet cluster observ ations, measurements of dark matter density on small-scales and subhalo survival requirements, and show that SIDM models with σ/m ≃ 0.1 cm 2 /g ≃ 0.2 barn/GeV are consistent with all observational constraints.

736 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a finely-binned tomographic weak lensing analysis of the Canada-FranceHawaii Telescope Lensing Survey, CFHTLenS, mitigating contamination to the signal from the presence of intrinsic galaxy alignments via the simultaneous fit of a cosmological model and an intrinsic alignment model.
Abstract: We present a finely-binned tomographic weak lensing analysis of the Canada-FranceHawaii Telescope Lensing Survey, CFHTLenS, mitigating contamination to the signal from the presence of intrinsic galaxy alignments via the simultaneous fit of a cosmological model and an intrinsic alignment model. CFHTLenS spans 154 square degrees in five optical bands, with accurate shear and photometric redshifts for a galaxy sample with a median redshift of zm = 0:70. We estimate the 21 sets of cosmic shear correlation functions associated with six redshift bins, each spanning the angular range of 1:5 < < 35 arcmin. We combine this CFHTLenS data with auxiliary cosmological probes: the cosmic microwave background with data from WMAP7, baryon acoustic oscillations with data from BOSS, and a prior on the Hubble constant from the HST distance ladder. This leads to constraints on the normalisation of the matter power spectrum 8 = 0:799 0:015 and the matter density parameter m = 0:271 0:010 for a flat CDM cosmology. For a flat wCDM cosmology we constrain the dark energy equation of state parameter w = 1:02 0:09. We also provide constraints for curved CDM and wCDM cosmologies. We find the intrinsic alignment contamination to be galaxy-type dependent with a significant intrinsic alignment signal found for early-type galaxies, in contrast to the late-type galaxy sample for which the intrinsic alignment signal is found to be consistent with zero.

688 citations


Journal ArticleDOI
TL;DR: In this paper, a simple function, dependent on the product of the atomic hydrogen column density, N(HI), and dust extinction, E(B-V), was derived to estimate the variation of the molecular hydrogen column densities over the sky.
Abstract: Prediction of the soft X-ray absorption along lines of sight through our Galaxy is crucial for understanding the spectra of extragalactic sources, but requires a good estimate of the foreground column density of photoelectric absorbing species. Assuming uniform elemental abundances this reduces to having a good estimate of the total hydrogen column density, N(Htot)=N(HI)+2N(H2). The atomic component, N(HI), is reliably provided using the mapped 21 cm radio emission but estimating the molecular hydrogen column density, N(H2), expected for any particular direction, is difficult. The X-ray afterglows of GRBs are ideal sources to probe X-ray absorption in our Galaxy because they are extragalactic, numerous, bright, have simple spectra and occur randomly across the entire sky. We describe an empirical method, utilizing 493 afterglows detected by the Swift XRT, to determine N(Htot) through the Milky Way which provides an improved estimate of the X-ray absorption in our Galaxy and thereby leads to more reliable measurements of the intrinsic X-ray absorption and, potentially, other spectral parameters, for extragalactic X-ray sources. We derive a simple function, dependent on the product of the atomic hydrogen column density, N(HI), and dust extinction, E(B-V), which describes the variation of the molecular hydrogen column density, N(H2), of our Galaxy, over the sky. Using the resulting N(Htot) we show that the dust-to-hydrogen ratio is correlated with the carbon monoxide emission and use this ratio to estimate the fraction of material which forms interstellar dust grains. Our resulting recipe represents a significant revision in Galactic absorption compared to previous standard methods, particularly at low Galactic latitudes.

661 citations


Journal ArticleDOI
TL;DR: Cappellari et al. as mentioned in this paper constructed detailed axisymmetric dynamical models (Jeans Anisotropic MGE), which allow for orbital anisotropy, include a dark matter halo and reproduce in detail both the galaxy images and the high-quality integral-field stellar kinematics out to about 1R(e), the projected half-light radius.
Abstract: We study the volume-limited and nearly mass-selected (stellar mass M-stars greater than or similar to 6 x 10(9) M circle dot) ATLAS(3D) sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). We construct detailed axisymmetric dynamical models (Jeans Anisotropic MGE), which allow for orbital anisotropy, include a dark matter halo and reproduce in detail both the galaxy images and the high-quality integral-field stellar kinematics out to about 1R(e), the projected half-light radius. We derive accurate total mass-to-light ratios (M/L)(e) and dark matter fractions f(DM), within a sphere of radius centred on the galaxies. We also measure the stellar (M/L)(stars) and derive a median dark matter fraction f(DM) = 13 per cent in our sample. We infer masses M-JAM equivalent to L x (M/L)(e) approximate to 2 x M-1/2, where M-1/2 is the total mass within a sphere enclosing half of the galaxy light. We find that the thin two-dimensional subset spanned by galaxies in the (M-JAM, sigma(e), R-e(maj)) coordinates system, which we call the Mass Plane (MP) has an observed rms scatter of 19 per cent, which implies an intrinsic one of 11 per cent. Here, is the major axis of an isophote enclosing half of the observed galaxy light, while Sigma(e) is measured within that isophote. The MP satisfies the scalar virial relation M-JAM proportional to sigma R-2(e)e(maj) within our tight errors. This show that the larger scatter in the Fundamental Plane (FP) (L, Sigma(e), R-e) is due to stellar population effects [including trends in the stellar initial mass function (IMF)]. It confirms that the FP deviation from the virial exponents is due to a genuine (M/L)(e) variation. However, the details of how both R-e and Sigma(e) are determined are critical in defining the precise deviation from the virial exponents. The main uncertainty in masses or M/L estimates using the scalar virial relation is in the measurement of R-e. This problem is already relevant for nearby galaxies and may cause significant biases in virial mass and size determinations at high redshift. Dynamical models can eliminate these problems. We revisit the (M/L)(e)-Sigma(e) relation, which describes most of the deviations between the MP and the FP. The best-fitting relation is (M/L)(e) sigma(0.72)(e) (r band). It provides an upper limit to any systematic increase of the IMF mass normalization with Sigma(e). The correlation is more shallow and has smaller scatter for slow rotating systems or for galaxies in Virgo. For the latter, when using the best distance estimates, we observe a scatter in (M/L)(e) of 11 per cent, and infer an intrinsic one of 8 per cent. We perform an accurate empirical study of the link between Sigma(e) and the galaxies circular velocity V-circ within 1R(e) (where stars dominate) and find the relation max (V-circ) approximate to 1.76 x Sigma(e), which has an observed scatter of 7 per cent. The accurate parameters described in this paper are used in the companion Paper XX (Cappellari et al.) of this series to explore the variation of global galaxy properties, including the IMF, on the projections of the MP.

629 citations


Journal ArticleDOI
TL;DR: In this article, the authors derived accurate total mass-to-light ratios (M/L) approximate to (m/L)(r = R-e) within a sphere of radius r = r-e centred on the galaxy, as well as stellar (M /L)(stars) (with the dark matter removed) for the volume-limited and nearly mass-selected (stellar mass M-star greater than or similar to 6 x 10(9) M-circle dot) ATLAS(3D) sample of 260 early-type galaxies (ETGs
Abstract: In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)(JAM) approximate to (M/L)(r = R-e) within a sphere of radius r = R-e centred on the galaxy, as well as stellar (M/L)(stars) (with the dark matter removed) for the volume-limited and nearly mass-selected (stellar mass M-star greater than or similar to 6 x 10(9) M-circle dot) ATLAS(3D) sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). Here, we use those parameters to study the two orthogonal projections (M-JAM, sigma(e)) and (M-JAM, R-e(maj)) of the thin Mass Plane (MP) (M-JAM, sigma(e), R-e(maj)) which describes the distribution of the galaxy population, where M-JAM = L x (M/L)(JAM) approximate to M-star. The distribution of galaxy properties on both projections of the MP is characterized by: (i) the same zone of exclusion (ZOE), which can be transformed from one projection to the other using the scalar virial equation. The ZOE is roughly described by two power laws, joined by a break at a characteristic mass M-JAM approximate to 3 x 10(10) M-circle dot, which corresponds to the minimum R-e and maximum stellar density. This results in a break in the mean M-JAM-sigma(e) relation with trends M-JAM proportional to sigma(2.3)(e) and M-JAM proportional to sigma(4.7)(e) at small and large sigma(e), respectively; (ii) a characteristic mass M-JAM approximate to 2 x 10(11) M-circle dot which separates a population dominated by flat fast rotator with discs and spiral galaxies at lower masses, from one dominated by quite round slow rotators at larger masses; (iii) below that mass the distribution of ETGs' properties on the two projections of the MP tends to be constant along lines of roughly constant sigma(e), or equivalently along lines with R-e(maj) proportional to M-JAM, respectively (or even better parallel to the ZOE: R-maj(e) proportional to M-JAM(0.75)); (iv) it forms a continuous and parallel sequence with the distribution of spiral galaxies; (v) at even lower masses, the distribution of fast-rotator ETGs and late spirals naturally extends to that of dwarf ETGs (Sph) and dwarf irregulars (Im), respectively. We use dynamical models to analyse our kinematic maps. We show that Sigma(e) traces the bulge fraction, which appears to be the main driver for the observed trends in the dynamical (M/L)(JAM) and in indicators of the (M/L)(pop) of the stellar population like H beta and colour, as well as in the molecular gas fraction. A similar variation along contours of Sigma(e) is also observed for the mass normalization of the stellar initial mass function (IMF), which was recently shown to vary systematically within the ETGs' population. Our preferred relation has the form log(10)[(M/L)(stars)/(M/L)(Salp)] = a + b x log(10)(sigma(e)/130 km s(-1)) with a = -0.12 +/- 0.01 and b = 0.35 +/- 0.06. Unless there are major flaws in all stellar population models, this trend implies a transition of the mean IMF from Kroupa to Salpeter in the interval log(10)(sigma(e)/km s(-1)) approximate to 1.9-2.5 (or sigma e approximate to 90-290 km s-1), with a smooth variation in between, consistently with what was shown in Cappellari et al. The observed d205 (or sigma e istribution of galaxy properties on the MP provides a clean and novel view for a number of previously reported trends, which constitute special two-dimensional projections of the more general four-dimensional parameters trends on the MP. We interpret it as due to a combination of two main effects: (i) an increase of the bulge fraction, which increases Sigma(e), decreases R-e, and greatly enhance the likelihood for a galaxy to have its star formation quenched, and (ii) dry merging, increasing galaxy mass and R-e by moving galaxies along lines of roughly constant Sigma(e) (or steeper), while leaving the population nearly unchanged.

616 citations


Journal ArticleDOI
TL;DR: SCUBA-2 as mentioned in this paper is an innovative 10000 pixel bolometer camera operating at submillimetre wavelengths on the James Clerk Maxwell Telescope (JCMT), which has the capability to carry out wide-field surveys to unprecedented depths, addressing key questions relating to the origins of galaxies, stars and planets.
Abstract: SCUBA-2 is an innovative 10000 pixel bolometer camera operating at submillimetre wavelengths on the James Clerk Maxwell Telescope (JCMT). The camera has the capability to carry out wide-field surveys to unprecedented depths, addressing key questions relating to the origins of galaxies, stars and planets. With two imaging arrays working simultaneously in the atmospheric windows at 450 and 850µm, the vast increase in pixel count means that SCUBA-2 maps the sky 100–150 times faster than the previous SCUBA instrument. In this paper we present an overview of the instrument, discuss the physical characteristics of the superconducting detector arrays, outline the observing modes and data acquisition, and present the early performance figures on the telescope. We also showcase the capabilities of the instrument via some early examples of the science SCUBA-2 has already undertaken. In February 2012, SCUBA-2 began a series of unique legacy surveys for the JCMT community. These surveys will take 2.5years and the results are already providing complementary data to the shorter wavelength, shallower, larger-area surveys from Herschel. The SCUBA-2 surveys will also provide a wealth of information for further study with new facilities such as ALMA, and future telescopes such as CCAT and SPICA.

572 citations


Journal ArticleDOI
TL;DR: Wetzel et al. as discussed by the authors examined the star formation histories and quenching time-scales of satellites of Mstar g 5 × 109 M⊙ at z ≈ 0.5, or ~5 Gyr ago.
Abstract: Author(s): Wetzel, AR; Tinker, JL; Conroy, C; van den Bosch, FC | Abstract: Satellite galaxies in groups and clusters aremore likely to have low star formation rates (SFRs) and lie on the 'red sequence' than central ('field') galaxies. Using galaxy group/cluster catalogues from the Sloan Digital Sky Survey Data Release 7, together with a high-resolution, cosmological N-body simulation to track satellite orbits, we examine the star formation histories and quenching time-scales of satellites of Mstar g 5 × 109 M⊙ at z ≈ 0. We first explore satellite infall histories: group preprocessing and ejected orbits are critical aspects of satellite evolution, and properly accounting for these, satellite infall typically occurred at z ~ 0.5, or ~5 Gyr ago. To obtain accurate initial conditions for the SFRs of satellites at their time of first infall, we construct an empirical parametrization for the evolution of central galaxy SFRs and quiescent fractions.With this, we constrain the importance and efficiency of satellite quenching as a function of satellite and host halo mass, finding that satellite quenching is the dominant process for building up all quiescent galaxies at Mstar l 1010M⊙. We then constrain satellite star formation histories, finding a 'delayed-then-rapid' quenching scenario: satellite SFRs evolve unaffected for 2-4 Gyr after infall, after which star formation quenches rapidly, with an e-folding time of l0.8Gyr. These quenching time-scales are shorter for more massive satellites but do not depend on host halo mass: the observed increase in the satellite quiescent fraction with halo mass arises simply because of satellites quenching in a lower mass group prior to infall (group preprocessing), which is responsible for up to half of quenched satellites in massive clusters. Because of the long time delay before quenching starts, satellites experience significant stellar mass growth after infall, nearly identical to central galaxies. This fact provides key physical insight into the subhalo abundance matching method. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

563 citations


Journal ArticleDOI
TL;DR: Galaxy Zoo 2 (GZ2) as discussed by the authors is a citizen science project with more than 16 million morphological classifications of 304 122 galaxies drawn from the Sloan Digital Sky Survey (SDSS).
Abstract: We present the data release for Galaxy Zoo 2 (GZ2), a citizen science project with more than 16 million morphological classifications of 304 122 galaxies drawn from the Sloan Digital Sky Survey (SDSS). Morphology is a powerful probe for quantifying a galaxy's dynamical history; however, automatic classifications of morphology (either by computer analysis of images or by using other physical parameters as proxies) still have drawbacks when compared to visual inspection. The large number of images available in current surveys makes visual inspection of each galaxy impractical for individual astronomers. GZ2 uses classifications from volunteer citizen scientists to measure morphologies for all galaxies in the DR7 Legacy survey with mr > 17, in addition to deeper images from SDSS Stripe 82. While the original GZ2 project identified galaxies as early-types, late-types or mergers, GZ2 measures finer morphological features. These include bars, bulges and the shapes of edge-on disks, as well as quantifying the relative strengths of galactic bulges and spiral arms. This paper presents the full public data release for the project, including measures of accuracy and bias. The majority (≳90 per cent) of GZ2 classifications agree with those made by professional astronomers, especially for morphological T-types, strong bars and arm curvature. Both the raw and reduced data products can be obtained in electronic format at http://data.galaxyzoo.org.

532 citations


Journal ArticleDOI
TL;DR: In this paper, the authors constructed the minimum-mass extrasolar nebula (MMEN), the circumstellar disk of solar-composition solids and gas from which such planets formed, if they formed near their current locations and did not migrate.
Abstract: Close-in super-Earths, with radii R = 2-5 R_Earth and orbital periods P < 100 days, orbit more than half, and perhaps nearly all Sun-like stars in the universe. We use this omnipresent population to construct the minimum-mass extrasolar nebula (MMEN), the circumstellar disk of solar-composition solids and gas from which such planets formed, if they formed near their current locations and did not migrate. In a series of back-of-the-envelope calculations, we demonstrate how in-situ formation in the MMEN is fast, efficient, and can reproduce many of the observed properties of close-in super-Earths, including their gas-to-rock fractions. Testable predictions are discussed.

Journal ArticleDOI
TL;DR: In this paper, the authors used cosmological simulations to show that these constraints were off by more than an order of magnitude because they did not properly account for the fact that the observed ellipticity gets contributions from the triaxial mass distribution outside the core set by scatterings, and the scatter in axis ratios is large.
Abstract: If dark matter has a large self-interaction scattering cross section, then interactions among dark-matter particles will drive galaxy and cluster halos to become spherical in their centers. Work in the past has used this effect to rule out velocity-independent, elastic cross sections larger than sigma/m ~ 0.02 cm^2/g based on comparisons to the shapes of galaxy cluster lensing potentials and X-ray isophotes. In this paper, we use cosmological simulations to show that these constraints were off by more than an order of magnitude because (a) they did not properly account for the fact that the observed ellipticity gets contributions from the triaxial mass distribution outside the core set by scatterings, (b) the scatter in axis ratios is large and (c) the core region retains more of its triaxial nature than estimated before. Including these effects properly shows that the same observations now allow dark matter self-interaction cross sections at least as large as sigma/m = 0.1 cm^2/g. We show that constraints on self-interacting dark matter from strong-lensing clusters are likely to improve significantly in the near future, but possibly more via central densities and core sizes than halo shapes.

Journal ArticleDOI
TL;DR: In this article, a survey of 12CO emission in 40 luminous sub-millimetre galaxies (SMGs), with 850-μm fluxes of S850μm = 4-20 mJy, was conducted with the Plateau de Bure Interferometer.
Abstract: We present the results from a survey of 12CO emission in 40 luminous sub-millimetre galaxies (SMGs), with 850-μm fluxes of S850 μm = 4–20 mJy, conducted with the Plateau de Bure Interferometer. We detect 12CO emission in 32 SMGs at z ∼ 1.2–4.1, including 16 SMGs not previously published. Using multiple 12CO line (Jup = 2–7) observations, we derive a median spectral line energy distribution for luminous SMGs. We report the discovery of a fundamental relationship between 12CO FWHM and 12CO line luminosity in high-redshift starbursts, which we interpret as a natural consequence of the baryon-dominated dynamics within the regions probed by our observations. We use far-infrared luminosities to assess the star formation efficiency in our SMGs, finding that the slope of the L′CO-LFIR relation is close to linear. We derive molecular gas masses, finding a mean gas mass of (5.3 ± 1.0) × 1010 M⊙. Combining these with dynamical masses, we determine the redshift evolution of the gas content of SMGs, finding that they do not appear to be significantly more gas rich than less vigorously star-forming galaxies at high redshifts. Finally, we collate X-ray observations, and study the interdependence of gas and dynamical properties of SMGs with their AGN activity and supermassive black hole masses (MBH), finding that SMGs lie significantly below the local MBH-σ relation.

Journal ArticleDOI
TL;DR: In this paper, it is predicted that the remnant of neutron star-neutron star mergers may not collapse immediately to a black hole (or even collapse at all), forming instead an unstable millisecond pulsar (magnetar) which powers a plateau phase in the X-ray light curve.
Abstract: A significant fraction of the long gamma-ray bursts (LGRBs) in the Swift sample have a plateau phase showing evidence of ongoing energy injection. We suggest that many short gamma-ray bursts (SGRBs) detected by the Swift satellite also show evidence of energy injection. Explaining this observation within the typical SGRB progenitor model is challenging as late time accretion, often used to explain plateaus in LGRBs, is likely to be absent from the SGRB population. Alternatively, it is predicted that the remnant of neutron star–neutron star mergers may not collapse immediately to a black hole (or even collapse at all), forming instead an unstable millisecond pulsar (magnetar) which powers a plateau phase in the X-ray light curve. By fitting the magnetar model to all of the Swift SGRBs observed until 2012 May, we find that about half can be clearly fitted with a magnetar plateau phase while the rest are consistent with forming a magnetar but the data are insufficient to prove a plateau phase. More data, both at early times and a larger sample, are required to confirm this. This model can be tested by detecting the gravitational wave emission from events using the next generation gravitational wave observatories.

Journal ArticleDOI
TL;DR: In this article, a suite of fourteen three-dimensional, high-resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions is presented.
Abstract: We present results for a suite of fourteen three-dimensional, high resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN I a simulations with detailed isotopic yield information. As such, it may serve as a database for Chandrasekhar-mass delayeddetonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ a physically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ t he deflagration to detonation transition (DDT) probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300, and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with central density of 2.9× 10 9 g cm −3 , plus in addition one high central density (5.5× 10 9 g cm −3 ) and one low central density (1.0× 10 9 g cm −3 ) rendition of the 100 ignition kernel configuration. For each simulatio n we determined detailed nucleosynthetic yields by post-processing 10 6 tracer particles with a 384 nuclide reaction network. All delayed detonation models result in explosions unbinding the white dwarf, producing a range of 56 Ni masses from 0.32 to 1.11 M⊙. As a general trend, the models predict that the stable neutron-rich iron group isotopes are not found at the lowest velocities, but rather at intermediate velocities (∼3, 000− 10, 000 km s −1 ) in a shell surrounding a 56 Ni-rich core. The models further predict relatively low velocity oxygen and carbon, with typical minimum velocities around 4, 000 and 10, 000 km s −1 , respectively.

Journal ArticleDOI
Carlotta Gruppioni1, Francesca Pozzi2, Giulia Rodighiero3, Ivan Delvecchio2, S. Berta4, Lucia Pozzetti1, G. Zamorani1, P. Andreani, Alessandro Cimatti2, O. Ilbert5, E. Le Floc'h, Dieter Lutz4, Benjamin Magnelli4, Lucia Marchetti3, Lucia Marchetti6, Pierluigi Monaco7, Raanan Nordon4, Seb Oliver8, P. Popesso4, L. Riguccini, Isaac Roseboom9, Isaac Roseboom8, David J. Rosario4, Mark Sargent, Mattia Vaccari3, Mattia Vaccari10, Bruno Altieri, H. Aussel, Ángel Bongiovanni11, J. Cepa11, Emanuele Daddi, H. Dominguez-Sanchez11, H. Dominguez-Sanchez1, D. Elbaz, N. M. Foerster Schreiber4, R. Genzel4, Alvaro Iribarrem12, M. Magliocchetti1, Roberto Maiolino13, Albrecht Poglitsch4, A. M. Pérez García, M. Sánchez-Portal, Eckhard Sturm4, Linda J. Tacconi4, Ivan Valtchanov, Alexandre Amblard14, V. Arumugam9, M. Bethermin, James J. Bock15, James J. Bock16, A. Boselli5, V. Buat5, Denis Burgarella5, N. Castro-Rodríguez17, N. Castro-Rodríguez11, Antonio Cava18, P. Chanial, David L. Clements19, A. Conley20, Asantha Cooray15, Asantha Cooray21, C. D. Dowell15, C. D. Dowell16, Eli Dwek22, Stephen Anthony Eales23, Alberto Franceschini3, Jason Glenn20, Matthew Joseph Griffin23, Evanthia Hatziminaoglou, Edo Ibar24, K. G. Isaak25, Rob Ivison9, Rob Ivison24, Guilaine Lagache26, Louis Levenson16, Louis Levenson15, Nanyao Y. Lu15, S. C. Madden, Bruno Maffei27, G. Mainetti3, H. T. Nguyen16, H. T. Nguyen15, B. O'Halloran19, M. J. Page28, P. Panuzzo, Andreas Papageorgiou23, Chris Pearson29, Chris Pearson30, Ismael Perez-Fournon17, Ismael Perez-Fournon11, Michael Pohlen23, Dimitra Rigopoulou29, Dimitra Rigopoulou31, Michael Rowan-Robinson19, Benjamin L. Schulz15, Douglas Scott32, Nick Seymour33, Nick Seymour28, D. L. Shupe15, Anthony J. Smith8, Jamie Stevens34, M. Symeonidis28, Markos Trichas35, K. E. Tugwell28, L. Vigroux36, Lian-Tao Wang8, G. Wright24, C. K. Xu15, Michael Zemcov16, Michael Zemcov15, S. Bardelli1, M. Carollo37, Thierry Contini38, O. Le Fevre5, Simon J. Lilly37, Vincenzo Mainieri, Alvio Renzini1, Marco Scodeggio1, E. Zucca1 
TL;DR: In this article, the authors exploit the deep and extended far-IR data sets (at 70, 100 and 160 μm) of the GPS PACS Evolutionary Probe (PEP) Survey, in combination with the Herschel Multi-tiered Extragalactic Survey data at 250, 350 and 500 μm, to derive the evolution of the rest-frame 35-, 60-, 90- and total infrared luminosity functions (LFs) up to z ∼ 4.
Abstract: We exploit the deep and extended far-IR data sets (at 70, 100 and 160 μm) of the Herschel Guaranteed Time Observation (GTO) PACS Evolutionary Probe (PEP) Survey, in combination with the Herschel Multi-tiered Extragalactic Survey data at 250, 350 and 500 μm, to derive the evolution of the rest-frame 35-, 60-, 90- and total infrared (IR) luminosity functions (LFs) up to z ∼ 4. We detect very strong luminosity evolution for the total IR LF (LIR ∝ (1 + z)3.55 ± 0.10 up to z ∼ 2, and ∝ (1 + z)1.62 ± 0.51 at 2 < z ≲ 4) combined with a density evolution (∝(1 + z)−0.57 ± 0.22 up to z ∼ 1 and ∝ (1 + z)−3.92 ± 0.34 at 1 < z ≲ 4). In agreement with previous findings, the IR luminosity density (ρIR) increases steeply to z ∼ 1, then flattens between z ∼ 1 and z ∼ 3 to decrease at z ≳ 3. Galaxies with different spectral energy distributions, masses and specific star formation rates (SFRs) evolve in very different ways and this large and deep statistical sample is the first one allowing us to separately study the different evolutionary behaviours of the individual IR populations contributing to ρIR. Galaxies occupying the well-established SFR–stellar mass main sequence (MS) are found to dominate both the total IR LF and ρIR at all redshifts, with the contribution from off-MS sources (≥0.6 dex above MS) being nearly constant (∼20 per cent of the total ρIR) and showing no significant signs of increase with increasing z over the whole 0.8 < z < 2.2 range. Sources with mass in the range 10 ≤ log(M/M⊙) ≤ 11 are found to dominate the total IR LF, with more massive galaxies prevailing at the bright end of the high-z (≳2) LF. A two-fold evolutionary scheme for IR galaxies is envisaged: on the one hand, a starburst-dominated phase in which the Super Massive Black Holes (SMBH) grows and is obscured by dust (possibly triggered by a major merging event), is followed by an AGN-dominated phase, then evolving towards a local elliptical. On the other hand, moderately star-forming galaxies containing a low-luminosity AGN have various properties suggesting they are good candidates for systems in a transition phase preceding the formation of steady spiral galaxies.

Journal ArticleDOI
TL;DR: The Making Galaxies in a Cosmological Context (MaGICC) program of smoothed particle hydrodynamics (SPH) simulations was introduced in this paper.
Abstract: We introduce the Making Galaxies in a Cosmological Context (MaGICC) program of smoothed particle hydrodynamics (SPH) simulations. We describe a parameter study of galaxy formation simulations of an L* galaxy that uses early stellar feedback combined with supernova feedback to match the stellar mass--halo mass relationship. While supernova feedback alone can reduce star formation enough to match the stellar mass--halo mass relationship, the galaxy forms too many stars before z=2 to match the evolution seen using abundance matching. Our early stellar feedback is purely thermal and thus operates like a UV ionization source as well as providing some additional pressure from the radiation of massive, young stars. The early feedback heats gas to >10^6 K before cooling to 10^4 K. The pressure from this hot gas creates a more extended disk and prevents more star formation prior to z=1 than supernovae feedback alone. The resulting disk galaxy has a flat rotation curve, an exponential surface brightness profile, and matches a wide range of disk scaling relationships. The disk forms from the inside-out with an increasing exponential scale length as the galaxy evolves. Overall, early stellar feedback helps to simulate galaxies that match observational results at low and high redshifts.

Journal ArticleDOI
TL;DR: In this paper, the authors provided a new tabulation of the transmission spectrum across the entire visible and infrared range of the hot Jupiter HD 189733b from UV to infrared using the STIS, ACS and WFC3 instruments.
Abstract: The hot Jupiter HD 189733b is the most extensively observed exoplanet. Its atmosphere has been detected and characterized in transmission and eclipse spectroscopy, and its phase curve measured at several wavelengths. This paper brings together the results of our campaign to obtain the complete transmission spectrum of the atmosphere of this planet from UV to infrared with the Hubble Space Telescope, using the STIS, ACS and WFC3 instruments. We provide a new tabulation of the transmission spectrum across the entire visible and infrared range. The radius ratio in each wavelength band was re-derived, where necessary, to ensure a consistent treatment of the bulk transit parameters and stellar limb darkening. Special care was taken to correct for, and derive realistic estimates of the uncertainties due to, both occulted and unocculted star spots. The combined spectrum is very different from the predictions of cloud-free models for hot Jupiters: it is dominated by Rayleigh scattering over the whole visible and near-infrared range, the only detected features being narrow sodium and potassium lines. We interpret this as the signature of a haze of condensate grains extending over at least five scaleheights. We show that a dust-dominated atmosphere could also explain several puzzling features of the emission spectrum and phase curves, including the large amplitude of the phase curve at 3.6 μm, the small hotspot longitude shift and the hot mid-infrared emission spectrum. We discuss possible compositions and derive some first-order estimates for the properties of the putative condensate haze/clouds. We finish by speculating that the dichotomy between the two observationally defined classes of hot Jupiter atmospheres, of which HD 189733b and HD 209458b are the prototypes, might not be whether they possess a temperature inversion, but whether they are clear or dusty. We also consider the possibility of a continuum of cloud properties between hot Jupiters, young Jupiters and L-type brown dwarfs.

Journal ArticleDOI
TL;DR: In this paper, the authors present data products from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) data set and demonstrate that their data meet necessary requirements to fully exploit the survey for weak gravitational lensing analyses in connection with photometric redshift studies.
Abstract: We present data products from the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS). CFHTLenS is based on the Wide component of the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS). It encompasses 154 deg^2 of deep, optical, high-quality, sub-arcsecond imaging data in the five optical filters u*g′r′i′z′. The scientific aims of the CFHTLenS team are weak gravitational lensing studies supported by photometric redshift estimates for the galaxies. This paper presents our data processing of the complete CFHTLenS data set. We were able to obtain a data set with very good image quality and high-quality astrometric and photometric calibration. Our external astrometric accuracy is between 60 and 70 mas with respect to Sloan Digital Sky Survey (SDSS) data, and the internal alignment in all filters is around 30 mas. Our average photometric calibration shows a dispersion of the order of 0.01–0.03 mag for g′r′i′z′ and about 0.04 mag for u* with respect to SDSS sources down to i_(SDSS) ≤ 21. We demonstrate in accompanying papers that our data meet necessary requirements to fully exploit the survey for weak gravitational lensing analyses in connection with photometric redshift studies. In the spirit of the CFHTLS, all our data products are released to the astronomical community via the Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLens/query.html. We give a description and how-to manuals of the public products which include image pixel data, source catalogues with photometric redshift estimates and all relevant quantities to perform weak lensing studies.

Journal ArticleDOI
TL;DR: In this article, the authors present the results of 2D simulations of the fully-coupled evolution of temperature and magnetic field in neutron stars, including the state-of-the-art kinetic coefficients and, for the first time, the important effect of the Hall term.
Abstract: Observations of magnetars and some of the high magnetic field pulsars have shown that their thermal luminosity is systematically higher than that of classical radiopulsars, thus confirming the idea that magnetic fields are involved in their X-ray emission. Here we present the results of 2D simulations of the fully-coupled evolution of temperature and magnetic field in neutron stars, including the state-of-the-art kinetic coefficients and, for the first time, the important effect of the Hall term. After gathering and thoroughly re-analysing in a consistent way all the best available data on isolated, thermally emitting neutron stars, we compare our theoretical models to a data sample of 40 sources. We find that our evolutionary models can explain the phenomenological diversity of magnetars, high-B radio-pulsars, and isolated nearby neutron stars by only varying their initial magnetic field, mass and envelope composition. Nearly all sources appear to follow the expectations of the standard theoretical models. Finally, we discuss the expected outburst rates and the evolutionary links between different classes. Our results constitute a major step towards the grand unification of the isolated neutron star zoo.

Journal ArticleDOI
TL;DR: In this paper, the autocorrelation function was used to derive the rotation period of main-sequence stars with masses between 0.3 and 0.55 M_sun.
Abstract: We have analysed 10 months of public data from the Kepler space mission to measure rotation periods of main-sequence stars with masses between 0.3 and 0.55 M_sun. To derive the rotational period we introduce the autocorrelation function and show that it is robust against phase and amplitude modulation and residual instrumental systematics. Of the 2483 stars examined, we detected rotation periods in 1570 (63.2%), representing an increase of a factor ~ 30 in the number of rotation period determination for field M-dwarfs. The periods range from 0.37-69.7 days, with amplitudes ranging from 1.0-140.8 mmags. The rotation period distribution is clearly bimodal, with peaks at ~ 19 and ~ 33 days, hinting at two distinct waves of star formation, a hypothesis that is supported by the fact that slower rotators tend to have larger proper motions. The two peaks of the rotation period distribution form two distinct sequences in period-temperature space, with the period decreasing with increasing temperature, reminiscent of the Vaughan-Preston gap. The period-mass distribution of our sample shows no evidence of a transition at the fully convective boundary. On the other hand, the slope of the upper envelope of the period-mass relation changes sign around 0.55 M_sun, below which period rises with decreasing mass.

Journal ArticleDOI
TL;DR: In this paper, it was shown that a constant cross-section per unit mass of T =m 0:1cm 2 g 1 is not sufficient to achieve the desired effect.
Abstract: Self-Interacting Dark Matter is an attractive alternative to the Cold Dark Matter paradigm only if it is able to substantially reduce the central densities of dwarf-size haloes while keeping the densities and shapes of cluster-size haloes within current constraints. Given the seemingly stringent nature of the latter, it was thought for nearly a decade that Self-Interacting Dark Matter would be viable only if the cross section for self-scattering was strongly velocitydependent. However, it has recently been suggested that a constant cross section per unit mass of T=m 0:1cm 2 g 1 is sufficient to accomplish the desired effect. We explicitly investigate this claim using high resolution cosmological simulations of a Milky-Way size halo and find that, similarly to the Cold Dark Matter case, such cross section produces a population of massive subhaloes that is inconsistent with the kinematics of the classical dwarf spheroidals, in particular with the inferred slopes of the mass profiles of Fornax and Sculptor. This problem is resolved if T=m 1cm 2 g 1 at the dwarf spheroidal scales. Since this value is likely inconsistent with the halo shapes of several clusters, our results leave only a small window open for a velocity-independent Self-Interacting Dark Matter model to work as a distinct alternative to Cold Dark Matter.

Journal ArticleDOI
TL;DR: In this article, a likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada-France-Hawaii Telescope (CFHT) Lensing Survey.
Abstract: A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada–France–Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS) CFHTLenS comprises 154 deg^2 of multi-colour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i′ band to a depth i′_(AB) < 247, for galaxies with signal-to-noise ratio ν_(SN) ≳ 10 The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures It fits PSF-convolved two-component (disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginalization over model nuisance parameters of galaxy position, size, brightness and bulge fraction The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity Two sets of image simulations that mirror the observed properties of CFHTLenS have been created to establish the method's accuracy and to derive an empirical correction for the effects of noise bias

Journal ArticleDOI
TL;DR: In this paper, the ultraviolet (UV) galaxy luminosity function (LF) at redshift z ≃ 7 and 8 was determined, and a first estimate at z ≥ 9.
Abstract: We present a new determination of the ultraviolet (UV) galaxy luminosity function (LF) at redshift z ≃ 7 and 8, and a first estimate at z ≃ 9. An accurate determination of the form and evolution of the galaxy LF during this era is of key importance for improving our knowledge of the earliest phases of galaxy evolution and the process of cosmic reionization. Our analysis exploits to the full the new, deepest Wide Field Camera 3/infrared imaging from our Hubble Space Telescope (HST) Ultra-Deep Field 2012 (UDF12) campaign, with dynamic range provided by including a new and consistent analysis of all appropriate, shallower/wider area HST survey data. Our new measurement of the evolving LF at z ≃ 7 to 8 is based on a final catalogue of ≃600 galaxies, and involves a step-wise maximum-likelihood determination based on the photometric redshift probability distribution for each object; this approach makes full use of the 11-band imaging now available in the Hubble Ultra-Deep Field (HUDF), including the new UDF12 F140W data, and the latest Spitzer IRAC imaging. The final result is a determination of the z ≃ 7 LF extending down to UV absolute magnitudes M_1500 = −16.75 (AB mag) and the z ≃ 8 LF down to M_1500 = −17.00. Fitting a Schechter function, we find M*_1500 = −19.90^(+0.23)_(−0.28), log ϕ* = −2.96^(+0.18)_(−0.23) and a faint-end slope α = −1.90^(+0.14)_(−0.15) at z ≃ 7, and M*_1500 = −20.12^(+0.37)_(−0.48), log ϕ* = −3.35^(+0.28)_(−0.47) and α = −2.02^(+0.22)_(-0.23) at z ≃ 8. These results strengthen previous suggestions that the evolution at z > 7 appears more akin to ‘density evolution’ than the apparent ‘luminosity evolution’ seen at z ≃ 5 − 7. We also provide the first meaningful information on the LF at z ≃ 9, explore alternative extrapolations to higher redshifts, and consider the implications for the early evolution of UV luminosity density. Finally, we provide catalogues (including derived z_phot, M_1500 and photometry) for the most robust z ∼ 6.5-11.9 galaxies used in this analysis. We briefly discuss our results in the context of earlier work and the results derived from an independent analysis of the UDF12 data based on colour–colour selection.

Journal ArticleDOI
TL;DR: In this article, it was shown that it is possible to form a prominent dark matter core within the well-controlled framework of an isolated, initially cuspy, 10 billion solar masses dark matter halo.
Abstract: The presence of a dark matter core in the central kiloparsec of many dwarf galaxies has been a long standing problem in galaxy formation theories based on the standard cold dark matter paradigm. Recent simulations, based on Smooth Particle Hydrodynamics and rather strong feedback recipes have shown that it was indeed possible to form extended dark matter cores using baryonic processes related to a more realistic treatment of the interstellar medium. Using adaptive mesh renement, together with a new, stronger supernovae feedback scheme that we have recently implemented in the RAMSES code, we show that it is also possible to form a prominent dark matter core within the well-controlled framework of an isolated, initially cuspy, 10 billion solar masses dark matter halo. Although our numerical experiment is idealized, it allows a clean and unambiguous identication of the dark matter core formation process. Our dark matter inner prole is well tted by a pseudo-isothermal prole with a core radius of 800 pc. The core formation mechanism is consistent with the one proposed recently by Pontzen & Governato. We highlight two key observational predictions of all simulations that nd cusp-core transformations: (i) a bursty star formation history (SFH) with peak to trough ratio of 5 to 10 and a duty cycle comparable to the local dynamical time; and (ii) a stellar distribution that is hot with v= 1. We compare the observational properties of our model galaxy with recent measurements of the isolated dwarf WLM. We show that the spatial and kinematical distribution of stars and HI gas are in striking agreement with observations, supporting the fundamental role played by stellar feedback in shaping both the stellar and dark matter distribution.

Journal ArticleDOI
TL;DR: In this paper, a class of alternative smooth-particle hydrodynamics (SPH) equations of motion (EOM) can be derived self-consistently from a discrete particle Lagrangian (guaranteeing manifest conservation) in a manner which tremendously improves treatment of instabilities and contact discontinuities.
Abstract: Various formulations of smooth-particle hydrodynamics (SPH) have been proposed, intended to resolve certain difficulties in the treatment of fluid mixing instabilities. Most have involved changes to the algorithm which either introduce artificial correction terms or violate arguably the greatest advantage of SPH over other methods: manifest conservation of energy, entropy, momentum, and angular momentum. Here, we show how a class of alternative SPH equations of motion (EOM) can be derived self-consistently from a discrete particle Lagrangian (guaranteeing manifest conservation) in a manner which tremendously improves treatment of instabilities and contact discontinuities. Saitoh & Makino recently noted that the volume element used to discretize the EOM does not need to explicitly invoke the mass density (as in the 'standard' approach); we show how this insight, and the resulting degree of freedom, can be incorporated into the rigorous Lagrangian formulation that retains ideal conservation properties and includes the 'Grad-h' terms that account for variable smoothing lengths. We derive a general EOM for any choice of volume element (particle 'weights') and method of determining smoothing lengths. We then specify this to a 'pressure-entropy formulation' which resolves problems in the traditional treatment of fluid interfaces. Implementing this in a new version of the GADGET code, we show it leads to good performance in mixing experiments (e.g. Kelvin-Helmholtz & blob tests). And conservation is maintained even in strong shock/blastwave tests, where formulations without manifest conservation produce large errors. This also improves the treatment of sub-sonic turbulence, and lessens the need for large kernel particle numbers. The code changes are trivial and entail no additional numerical expense. This provides a general framework for self-consistent derivation of different 'flavors' of SPH.

Journal ArticleDOI
TL;DR: In this paper, a set of cosmological simulations combined with radiative transfer calculations were used to investigate the distribution of neutral hydrogen in the post-reionization Universe, and the predicted neutral hydrogen column density distributions agree very well with the observations.
Abstract: We use a set of cosmological simulations combined with radiative transfer calculations to investigate the distribution of neutral hydrogen in the post-reionization Universe. We assess the contributions from the metagalactic ionizing background, collisional ionization and diffuse recombination radiation to the total ionization rate at redshifts z = 0 5. We find that the densities above which hydrogen self-shielding becomes important are consistent with analytic calculations and previous work. However, because of diffuse recombination radiation, whose intensity peaks at the same density, the transition between highly ionized and self-shielded regions is smoother than what is usually assumed. We provide fitting functions to the simulated photoionization rate as a function of density and show that post-processing simulations with the fitted rates yields results that are in excellent agreement with the original radiative transfer calculations. The predicted neutral hydrogen column density distributions agree very well with the observations. In particular, the simulations reproduce the remarkable lack of evolution in the column density distribution of Lyman limit and weak damped Lyα systems below z = 3. The evolution of the low column density end is affected by the increasing importance of collisional ionization with decreasing redshift. On the other hand, the simulations predict the abundance of strong damped Lyα systems to broadly track the cosmic star formation rate density.

Journal ArticleDOI
TL;DR: In this article, a new oscillation code, GYRE, which solves the stellar pulsation equations (both adiabatic and non-adiabatic) using a novel Magnus Multiple Shooting numerical scheme devised to overcome certain weaknesses of the usual relaxation and shooting schemes appearing in the literature is presented.
Abstract: We present a new oscillation code, GYRE, which solves the stellar pulsation equations (both adiabatic and non-adiabatic) using a novel Magnus Multiple Shooting numerical scheme devised to overcome certain weaknesses of the usual relaxation and shooting schemes appearing in the literature. The code is accurate (up to 6th order in the number of grid points), robust, efficiently makes use of multiple processor cores and/or nodes, and is freely available in source form for use and distribution. We verify the code against analytic solutions and results from other oscillation codes, in all cases finding good agreement. Then, we use the code to explore how the asteroseismic observables of a 1.5 M star change as it evolves through the red-giant bump.

Journal ArticleDOI
TL;DR: In this paper, the cosmological constraints from 2D weak gravitational lensing by the large-scale structure in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) are presented.
Abstract: We present cosmological constraints from 2D weak gravitational lensing by the large-scale structure in the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) which spans 154 deg^2 in five optical bands. Using accurate photometric redshifts and measured shapes for 4.2 million galaxies between redshifts of 0.2 and 1.3, we compute the 2D cosmic shear correlation function over angular scales ranging between 0.8 and 350 arcmin. Using non-linear models of the dark-matter power spectrum, we constrain cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. The best constraints from lensing alone are obtained for the small-scale density-fluctuations amplitude σ_8 scaled with the total matter density Ωm. For a flat Λcold dark matter (ΛCDM) model we obtain σ_8(Ω_m/0.27)0.6 = 0.79 ± 0.03. We combine the CFHTLenS data with 7-year Wilkinson Microwave Anisotropy Probe (WMAP7), baryonic acoustic oscillations (BAO): SDSS-III (BOSS) and a Hubble Space Telescope distance-ladder prior on the Hubble constant to get joint constraints. For a flat ΛCDM model, we find Ω_m = 0.283 ± 0.010 and σ_8 = 0.813 ± 0.014. In the case of a curved wCDM universe, we obtain Ω_m = 0.27 ± 0.03, σ_8 = 0.83 ± 0.04, w0 = −1.10 ± 0.15 and Ω_K = 0.006^(+0.006)_(− 0.004). We calculate the Bayesian evidence to compare flat and curved ΛCDM and dark-energy CDM models. From the combination of all four probes, we find models with curvature to be at moderately disfavoured with respect to the flat case. A simple dark-energy model is indistinguishable from ΛCDM. Our results therefore do not necessitate any deviations from the standard cosmological model.

Journal ArticleDOI
TL;DR: In this paper, the authors systematically relax the classic Bondi assumptions in a typical galaxy hosting a SMBH, and show that the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction.
Abstract: Using 3D AMR simulations, linking the 50 kpc to the sub-pc scales over the course of 40 Myr, we systematically relax the classic Bondi assumptions in a typical galaxy hosting a SMBH. In the realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the nonlinear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when t_cool/t_ff 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (t_turb/t_cool < 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for fluctuations. Chaotic cold accretion may be common in many systems, such as hot galactic halos, groups, and clusters, generating high-velocity clouds and strong variations of the AGN luminosity and jet orientation. In this mode, the black hole can quickly react to the state of the entire host galaxy, leading to efficient self-regulated AGN feedback and the symbiotic Magorrian relation. During phases of overheating, the hot mode becomes the single channel of accretion (with a different cuspy temperature profile), though strongly suppressed by turbulence.