scispace - formally typeset
Search or ask a question

Showing papers on "Adenocarcinoma of the lung published in 2016"



Journal ArticleDOI
15 Nov 2016-PLOS ONE
TL;DR: MAPK signaling is the dominant downstream signal responsible for ectopic PD-L1 expression, in which STAT3 is also involved to some extent, and MAPK signaling may control the expression of PD- L1 and several genes related to enhanced cell motility.
Abstract: Ectopic programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancers (NSCLCs) is related to immune evasion by cancer, and it is a molecular target of immune checkpoint therapies. Although some altered signals in NSCLCs are responsible for ectopic PD-L1 expression, the precise mechanisms remain obscure. Because we found a higher frequency of EGFR/KRAS mutations in NSCLC cell lines with high PD-L1 expression (p < 0.001), we evaluated the relationships between downstream signals and PD-L1 expression, particularly in three KRAS-mutant adenocarcinoma cell lines. The MEK inhibitor U0126 (20 μM) significantly decreased the surface PD-L1 levels by 50-60% compared with dimethyl sulfoxide (p < 0.0001). Phorbol 12-myristate 13-acetate stimulation (100 nM, 15 min) increased (p < 0.05) and two ERK2 siRNAs as well as KRAS siRNAs decreased (p < 0.05) PD-L1 expression. The transcriptional activity of the potential AP-1 site (+4785 to +5056 from the transcription start site) in the PD-L1 gene was demonstrated by luciferase assays, which was inhibited by U0126. The chromatin immunoprecipitation assay demonstrated the binding of cJUN to the AP-1 site. Two STAT3 siRNAs decreased PD-L1 expression by 10-32% in two of the three KRAS-mutant lung adenocarcinoma cell lines (p < 0.05), while the PI3K inhibitor LY294002 (40 μM) did not change the expression level. Supervised cluster analysis and gene set enrichment analysis between the PD-L1-high and -low NSCLCs revealed a correlation between PD-L1 expression and genes/pathways related to cell motility/adhesion. These results indicate that MAPK signaling is the dominant downstream signal responsible for ectopic PD-L1 expression, in which STAT3 is also involved to some extent. Furthermore, MAPK signaling may control the expression of PD-L1 and several genes related to enhanced cell motility. Our findings suggest that MAPK, along with STAT3, is important for determining PD-L1 expression, which could be useful for targeted therapies against lung cancers.

130 citations


Journal ArticleDOI
TL;DR: The distinct clonal and subclonal mutation signatures suggest possible diverse carcinogenesis pathways for endogenous and exogenous exposures, and may serve as a foundation for more effective treatments for this lethal disease.
Abstract: Background Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer and has a high risk of distant metastasis at every disease stage. We aimed to characterize the genomic landscape of LUAD and identify mutation signatures associated with tumor progression. Methods and Findings We performed an integrative genomic analysis, incorporating whole exome sequencing (WES), determination of DNA copy number and DNA methylation, and transcriptome sequencing for 101 LUAD samples from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We detected driver genes by testing whether the nonsynonymous mutation rate was significantly higher than the background mutation rate and replicated our findings in public datasets with 724 samples. We performed subclonality analysis for mutations based on mutant allele data and copy number alteration data. We also tested the association between mutation signatures and clinical outcomes, including distant metastasis, survival, and tumor grade. We identified and replicated two novel candidate driver genes, POU class 4 homeobox 2 (POU4F2) (mutated in 9 [8.9%] samples) and ZKSCAN1 (mutated in 6 [5.9%] samples), and characterized their major deleterious mutations. ZKSCAN1 was part of a mutually exclusive gene set that included the RTK/RAS/RAF pathway genes BRAF, EGFR, KRAS, MET, and NF1, indicating an important driver role for this gene. Moreover, we observed strong associations between methylation in specific genomic regions and somatic mutation patterns. In the tumor evolution analysis, four driver genes had a significantly lower fraction of subclonal mutations (FSM), including TP53 (p = 0.007), KEAP1 (p = 0.012), STK11 (p = 0.0076), and EGFR (p = 0.0078), suggesting a tumor initiation role for these genes. Subclonal mutations were significantly enriched in APOBEC-related signatures (p < 2.5×10−50). The total number of somatic mutations (p = 0.0039) and the fraction of transitions (p = 5.5×10−4) were associated with increased risk of distant metastasis. Our study’s limitations include a small number of LUAD patients for subgroup analyses and a single-sample design for investigation of subclonality. Conclusions These data provide a genomic characterization of LUAD pathogenesis and progression. The distinct clonal and subclonal mutation signatures suggest possible diverse carcinogenesis pathways for endogenous and exogenous exposures, and may serve as a foundation for more effective treatments for this lethal disease. LUAD’s high heterogeneity emphasizes the need to further study this tumor type and to associate genomic findings with clinical outcomes.

129 citations


Journal ArticleDOI
TL;DR: It is proposed that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.
Abstract: Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of KrasLA1/+;P53R172HΔG/+ (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial–mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial–mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.

110 citations


Journal ArticleDOI
12 May 2016-PLOS ONE
TL;DR: Co-expression analysis revealed that ACSL1 was coexpressed with MYBPH, PTPRE, PFKFB3, SOCS3 in colon cancer and with LRRFIP1, TSC22D1 in lung cancer, and ACSL-coexpressed molecules may be used to further investigate the role of ACSL family in individual type of cancers.
Abstract: Dysregulated lipid metabolism contributes to cancer progression. Our previous study indicates that long-chain fatty acyl-Co A synthetase (ACSL) 3 is essential for lipid upregulation induced by endoplasmic reticulum stress. In this report, we aimed to identify the role of ACSL family in cancer with systematic analysis and in vitro experiment. We explored the ACSL expression using Oncomine database to determine the gene alteration during carcinogenesis and identified the association between ACSL expression and the survival of cancer patient using PrognoScan database. ACSL1 may play a potential oncogenic role in colorectal and breast cancer and play a potential tumor suppressor role in lung cancer. Co-expression analysis revealed that ACSL1 was coexpressed with MYBPH, PTPRE, PFKFB3, SOCS3 in colon cancer and with LRRFIP1, TSC22D1 in lung cancer. In accordance with PrognoScan analysis, downregulation of ACSL1 in colon and breast cancer cell line inhibited proliferation, migration, and anchorage-independent growth. In contrast, increase of oncogenic property was observed in lung cancer cell line by attenuating ACSL1. High ACSL3 expression predicted a better prognosis in ovarian cancer; in contrast, high ACSL3 predicted a worse prognosis in melanoma. ACSL3 was coexpressed with SNUPN, TRIP13, and SEMA5A in melanoma. High expression of ACSL4 predicted a worse prognosis in colorectal cancer, but predicted better prognosis in breast, brain and lung cancer. ACSL4 was coexpressed with SERPIN2, HNRNPCL1, ITIH2, PROCR, LRRFIP1. High expression of ACSL5 predicted good prognosis in breast, ovarian, and lung cancers. ACSL5 was coexpressed with TMEM140, TAPBPL, BIRC3, PTPRE, and SERPINB1. Low ACSL6 predicted a worse prognosis in acute myeloid leukemia. ACSL6 was coexpressed with SOX6 and DARC. Altogether, different members of ACSLs are implicated in diverse types of cancer development. ACSL-coexpressed molecules may be used to further investigate the role of ACSL family in individual type of cancers.

103 citations


Journal ArticleDOI
TL;DR: EGFR and ALK gene alterations are associated with delayed onset of BM and longer MS relative to patients without these alterations, and the CoD was overwhelmingly nonneurologic in patients with known CoD.
Abstract: Purpose Lung cancer remains the most common cause of both cancer mortality and brain metastases (BM). The purpose of this study was to assess the effect of gene alterations and tyrosine kinase inhibition (TKI) on median survival (MS) and cause of death (CoD) in patients with BM from lung adenocarcinoma (L-adeno). Methods A multi-institutional retrospective database of patients with L-adeno and newly diagnosed BM between 2006 and 2014 was created. Demographics, gene alterations, treatment, MS, and CoD were analyzed. The treatment patterns and outcomes were compared with those in prior trials. Results Of 1521 L-adeno patients, 816 (54%) had known alteration status. The gene alteration rates were 29%, 10%, and 26% for EGFR , ALK , and KRAS , respectively. The time from primary diagnosis to BM for EGFR −/+ was 10/15 months ( P =.02) and for ALK −/+ was 10/20 months ( P EGFR and ALK −, EGFR +, ALK + were 14, 23 ( P P EGFR + patients who did/did not receive TKI before BM was 17/30 months ( P EGFR/ALK hazard ratios: 1.06 [ P =.84]/1.60 [ P =.45], respectively). The CoD was nonneurologic in 82% of patients with known CoD. Conclusion EGFR and ALK gene alterations are associated with delayed onset of BM and longer MS relative to patients without these alterations. The CoD was overwhelmingly nonneurologic in patients with known CoD.

81 citations


Journal ArticleDOI
11 Aug 2016-PLOS ONE
TL;DR: THBS1 functions as a tumor suppressor in lung adenocarcinoma, however, THBS2 may play a double-edged role in the progression of lung AC, i.e. anti-angiogenic and oncogenic function.
Abstract: Thrombospondin 1 and thrombospondin 2 (THBS1 and THBS2) share similar multifunctional domains, and are known to be antiangiogenic. However, the expression pattern of THBS1 and THBS2 is different, and the specific role of THBS2 in different subtypes of lung cancer remains largely unclear. To evaluate the significance of THBS1 and THBS2 in the development of lung cancer, the present study performed a microarray-based systematic-analysis to determine the transcript levels of thrombospondins and their relation to the prognosis in lung cancer. THBS1 was in general underexpressed in lung cancer; in contrast, mRNA levels of THBS2 were markedly overexpressed in a number of datasets of non-small cell lung carcinoma (NSCLC), including lung adenocarcinoma (AC) and squamous cell carcinoma. Similar expression pattern of THBS1 and THBS2 was verified in pulmonary AC cell lines with real-time PCR analysis. The survival of lung AC patients with high THBS2 mRNA expression levels was poorer than patients with low levels of expression of THBS2. In a microarray-based analysis, genes coexpressed with THBS1 or THBS2 were determined. Pulmonary AC patients with a high expression level of sevenTSHB1-coexpressed genes (CCL5, CDH11, FYB, GZMK, LA-DQA1, PDE4DIP, and SELL) had better survival rates than those with a low expression level. Patients with a high expression of seven TSHB2-coexpressed genes (CHI3L1, COL5A2, COL11A1, FAP, MXRA5, THY1, and VCAN) had poor survival rates. Downregulation of VCAN and THBS2 with shRNA inhibited the cell proliferation in the A549 cell line. In summary, THBS1 functions as a tumor suppressor in lung adenocarcinoma. However, THBS2 may play a double-edged role in the progression of lung AC, i.e. anti-angiogenic and oncogenic function. Further study on the mechanism underlying the activity of THBS2 is warranted to have further implications for cancer diagnosis and treatment of pulmonary AC.

68 citations


Journal ArticleDOI
TL;DR: Ectopic expression of the SLC3A2-NRG1 fusion in lung cancer cells increased cell migration, proliferation and tumor growth in vitro and in xenograft models, suggesting oncogenic function for the fusion protein.
Abstract: The neuregulin 1 (NRG1) fusion is a recently identified novel driver oncogene in invasive mucinous adenocarcinoma of the lung (IMA). After identification of a case of SLC3A2-NRG1 in a patient with IMA, we verified this fusion gene in a cohort of 59 patients with IMA. Targeted cancer panel sequencing and RT-PCR identified the possible coexistence of other driver oncogenes. Among 59 IMAs, we found 16 NRG1 fusions (13 SLC3A2-NRG1 and 3 CD74-NRG1). Of 16 patients with NRG1 fusions, concurrent KRAS codon 12 mutations were found in 10 cases. We also found concurrent NRAS Q61L mutation and EML4-ALK fusion in additional two cases with NRG1 fusions. When comparing overall survival (OS) according to the presence of NRG1 fusions showed that patients harboring NRG1 fusions had significantly inferior OS than those without NRG1 fusions (hazard ratio = 0.286; 95% confidence interval, .094 to .865). Ectopic expression of the SLC3A2-NRG1 fusion in lung cancer cells increased cell migration, proliferation and tumor growth in vitro and in xenograft models, suggesting oncogenic function for the fusion protein. We found that the SLC3A2-NRG1 fusion promoted ERBB2-ERBB3 phosphorylation and heteroduplex formation and activated the downstream PI3K/AKT/mTOR pathway through paracrine signaling. These findings suggested that the SLC3A2-NRG1 fusion was a driver in IMA with an important prognostic impact. SLC3A2-NRG1 should be considered a therapeutic target for patients with IMA.

57 citations


Journal ArticleDOI
01 Dec 2016-PLOS ONE
TL;DR: It is proved that RMRP acted as an oncogene LncRNA to promote the expression of KRAS, FMNL2 and SOX9 by inhibiting miR-206 expression in lung cancer and suggested that R MRP might serve as a therapeutic target in lung adenocarcinoma.
Abstract: Accumulating studies have demonstrated that long noncoding RNAs (lncRNAs) act a crucial role in the development of tumors. However, the role of lncRNAs in lung cancer remains largely unknown. In this study, we demonstrated that theexpression of RMRP was upregulated in lung adenocarcinoma tissues compared to the matched adjacent normal tissues. Moreover, of 35 lung adenocarcinoma samples, RMRP expression was upregulated in 25 cases (25/35; 71.4%) compared to the adjacent normal tissues. We also showed that RMRP expression was upregulated in lung adenocarcinoma cell lines (A549, SPC-A1, H1299 and H23) compared to the bronchial epithelial cell line (16HBE). Ectopic expression of RMRP promoted lung adenocarcinoma cell proliferation, colony formation and invasion. In addition, overexpression of RMRP inhibited the miR-206 expression in the H1299 cell and increased the KRAS, FMNL2 and SOX9 expression, which were the target genes of miR-206. Re-expression of miR-206 reversed the RMRP-induced the H1299 cell proliferation and migration. Our data proved that RMRP acted as an oncogene LncRNA to promote the expression of KRAS, FMNL2 and SOX9 by inhibiting miR-206 expression in lung cancer. These data suggested that RMRP might serve as a therapeutic target in lung adenocarcinoma.

57 citations


Journal ArticleDOI
TL;DR: EGFR‐mutated adenocarcinoma showed significantly higher frequencies of multiple bilateral lung metastases, convergence of surrounding structures, surrounding ground glass opacity, and notch at HRCT compared with the non–EGFR•mutated type.

54 citations


Journal ArticleDOI
TL;DR: These findings describe recurrent NKX2‐1 mutations in invasive mucinous adenocarcinomas of the lung and support NKX 2‐1 as a lineage‐specific tumor suppressor gene in lung carcinogenesis.

Journal ArticleDOI
TL;DR: It is suggested that loss of tumor-suppressive miR-29s enhanced cancer cell invasion in lung SCC through direct regulation of oncogenic LOXL2.
Abstract: Lung cancer remains the most frequent cause of cancer-related death in developed countries. A recent molecular-targeted strategy has contributed to improvement of the remarkable effect of adenocarcinoma of the lung. However, such treatment has not been developed for squamous cell carcinoma (SCC) of the disease. Our recent studies of microRNA (miRNA) expression signatures of human cancers showed that the microRNA-29 family (miR‑29a, miR‑29b and miR‑29c) significantly reduced cancer tissues compared to normal tissues. These findings suggest that miR‑29s act as tumor-suppressors by targeting several oncogenic genes. The aim of the study was to investigate the functional significance of miR‑29s in lung SCC and to identify miR‑29s modulating molecular targets in lung SCC cells. Restoration of all mature members of the miR‑29s inhibited cancer cell migration and invasion. Gene expression data combined in silico analysis and luciferase reporter assays demonstrated that the lysyl oxidase-like 2 (LOXL2) gene was a direct regulator of tumor‑suppressive miR‑29s. Moreover, overexpressed LOXL2 was confirmed in lung SCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in lung SCC cell lines. Our present data suggested that loss of tumor-suppressive miR‑29s enhanced cancer cell invasion in lung SCC through direct regulation of oncogenic LOXL2. Elucidation of the novel lung SCC molecular pathways and targets regulated by tumor-suppressive miR‑29s will provide new insights into the potential mechanisms of oncogenesis and metastasis of the disease.

Journal ArticleDOI
12 Sep 2016-PLOS ONE
TL;DR: Lung cancer in CPFE, most commonly SqCC, presents in elderly heavy smokers with a male predominance and the median survival for CPFE patients with lung cancer is 19.5 months, significantly shorter than in non-CPFE.
Abstract: Purpose Patients with combined pulmonary fibrosis and emphysema (CPFE) have been suggested to have an increased risk of lung cancer. We conducted a systematic review of all published data and performed a meta-analysis to define the characteristics of lung cancer that develops in CPFE.

01 Mar 2016
TL;DR: Afatinib significantly improved the objective response rate versus chemotherapy in patients with brain metastases and lend support to the clinical activity of afatinib in EGFR mutation–positive patients with NSCLC and asymptomaticbrain metastases.
Abstract: Introduction Metastatic spread to the brain is common in patients with non–small cell lung cancer (NSCLC), but these patients are generally excluded from prospective clinical trials. The studies, phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations (LUX-Lung 3) and a randomized, open-label, phase III study of BIBW 2992 versus chemotherapy as first-line treatment for patients with stage IIIB or IV adenocarcinoma of the lung harbouring an EGFR activating mutation (LUX-Lung 6) investigated first-line afatinib versus platinum-based chemotherapy in epidermal growth factor receptor gene (EGFR) mutation-positive patients with NSCLC and included patients with brain metastases; prespecified subgroup analyses are assessed in this article. Methods For both LUX-Lung 3 and LUX-Lung 6, prespecified subgroup analyses of progression-free survival (PFS), overall survival, and objective response rate were undertaken in patients with asymptomatic brain metastases at baseline (n = 35 and n = 46, respectively). Post hoc analyses of clinical outcomes was undertaken in the combined data set (n = 81). Results In both studies, there was a trend toward improved PFS with afatinib versus chemotherapy in patients with brain metastases (LUX-Lung 3: 11.1 versus 5.4 months, hazard ratio [HR] = 0.54, p = 0.1378; LUX-Lung 6: 8.2 versus 4.7 months, HR = 0.47, p = 0.1060). The magnitude of PFS improvement with afatinib was similar to that observed in patients without brain metastases. In combined analysis, PFS was significantly improved with afatinib versus with chemotherapy in patients with brain metastases (8.2 versus 5.4 months; HR, 0.50; p = 0.0297). Afatinib significantly improved the objective response rate versus chemotherapy in patients with brain metastases. Safety findings were consistent with previous reports. Conclusions These findings lend support to the clinical activity of afatinib in EGFR mutation–positive patients with NSCLC and asymptomatic brain metastases.


Journal ArticleDOI
TL;DR: Two genes, SPATS2 and ST6GALNAC1, are identified as novel complemental biomarkers discriminating SCC and AD, which will contribute to a more accurate diagnosis of NSCLC, which is crucial for precision medicine for lung cancer.
Abstract: Targeted therapies based on the molecular and histological features of cancer types are becoming standard practice. The most effective regimen in lung cancers is different between squamous cell carcinoma (SCC) and adenocarcinoma (AD). Therefore a precise diagnosis is crucial, but this has been difficult, particularly for poorly differentiated SCC (PDSCC) and AD without a lepidic growth component (non-lepidic AD). Biomarkers enabling a precise diagnosis are therefore urgently needed. Cap Analysis of Gene Expression (CAGE) is a method used to quantify promoter activities across the whole genome by determining the 5’ ends of capped RNA molecules with next-generation sequencing. We performed CAGE on 97 frozen tissues from surgically resected lung cancers (22 SCC and 75 AD), and confirmed the findings by immunohistochemical analysis (IHC) in an independent group (29 SCC and 45 AD). Using the genome-wide promoter activity profiles, we confirmed that the expression of known molecular markers used in IHC for SCC (CK5, CK6, p40 and desmoglein-3) and AD (TTF-1 and napsin A) were different between SCC and AD. We identified two novel marker candidates, SPATS2 for SCC and ST6GALNAC1 for AD, as showing comparable performance and complementary utility to the known markers in discriminating PDSCC and non-lepidic AD. We subsequently confirmed their utility at the protein level by IHC in an independent group. We identified two genes, SPATS2 and ST6GALNAC1, as novel complemental biomarkers discriminating SCC and AD. These findings will contribute to a more accurate diagnosis of NSCLC, which is crucial for precision medicine for lung cancer.

Journal ArticleDOI
12 Aug 2016-PLOS ONE
TL;DR: EGFR mutations were associated with ground-glass opacity, KRAS-positive tumors were generally solid and less likely to metastasize to the lung and pleura, and ALK- positive tumors tended to present with lymphadenopathy, extranodal invasion, and lymphangitis.
Abstract: This study aimed to identify the computed tomography characteristics of treatment-naive patients with lung adenocarcinoma and known driver mutations in EGFR, KRAS, or ALK. Patients with advanced lung adenocarcinoma (stage IIIB–IV) and known mutations in EGFR, KRAS, or ALK were assessed. The radiological findings for the main tumor and intra-thoracic status were retrospectively analyzed in each group, and the groups’ characteristics were compared. We identified 265 treatment-naive patients with non-small-cell carcinoma, who had EGFR mutations (n = 159), KRAS mutations (n = 55), or ALK rearrangements (n = 51). Among the three groups, we evaluated only patients with stage IIIB–IV lung adenocarcinoma who had EGFR mutations (n = 126), KRAS mutations (n = 35), or ALK rearrangements (n = 47). We found that ground-glass opacity at the main tumor was significantly more common among EGFR-positive patients, compared to ALK-positive patients (p = 0.009). Lymphadenopathy was significantly more common among ALK-positive patients, compared to EGFR-positive patients (p = 0.003). Extranodal invasion was significantly more common among ALK-positive patients, compared to EGFR-positive patients and KRAS-positive patients (p = 0.001 and p = 0.049, respectively). Lymphangitis was significantly more common among ALK-positive patients, compared to EGFR-positive patients (p = 0.049). Pleural effusion was significantly less common among KRAS-positive patients, compared to EGFR-positive patients and ALK-positive patients (p = 0.046 and p = 0.026, respectively). Lung metastases were significantly more common among EGFR-positive patients, compared to KRAS-positive patients and ALK-positive patients (p = 0.007 and p = 0.04, respectively). In conclusion, EGFR mutations were associated with ground-glass opacity, KRAS-positive tumors were generally solid and less likely to metastasize to the lung and pleura, and ALK-positive tumors tended to present with lymphadenopathy, extranodal invasion, and lymphangitis. These mutation-specific imaging characteristics may be related to the biological differences between these cancers.

Journal ArticleDOI
13 Jun 2016-PLOS ONE
TL;DR: It is shown for the first time that the TASK-1 channel regulates apoptosis and proliferation in a subset of NSCLC and Na+-coupled nutrient transport across the cell membrane is functionally coupled to the efflux of K+ via K+ channels.
Abstract: Lung cancer is the leading cause of cancer deaths worldwide; survival times are poor despite therapy. The role of the two-pore domain K+ (K2P) channel TASK-1 (KCNK3) in lung cancer is at present unknown. We found that TASK-1 is expressed in non-small cell lung cancer (NSCLC) cell lines at variable levels. In a highly TASK-1 expressing NSCLC cell line, A549, a characteristic pH- and hypoxia-sensitive non-inactivating K+ current was measured, indicating the presence of functional TASK-1 channels. Inhibition of TASK-1 led to significant depolarization in these cells. Knockdown of TASK-1 by siRNA significantly enhanced apoptosis and reduced proliferation in A549 cells, but not in weakly TASK-1 expressing NCI-H358 cells. Na+-coupled nutrient transport across the cell membrane is functionally coupled to the efflux of K+ via K+ channels, thus TASK-1 may potentially influence Na+-coupled nutrient transport. In contrast to TASK-1, which was not differentially expressed in lung cancer vs. normal lung tissue, we found the Na+-coupled nutrient transporters, SLC5A3, SLC5A6, and SLC38A1, transporters for myo-inositol, biotin and glutamine, respectively, to be significantly overexpressed in lung adenocarcinomas. In summary, we show for the first time that the TASK-1 channel regulates apoptosis and proliferation in a subset of NSCLC.

Journal ArticleDOI
07 Mar 2016-PLOS ONE
TL;DR: Findings indicate that lncRNA RGMB-AS1 may play an important role in lung adenocarcinoma and may serve as a potential therapeutic target.
Abstract: Lung cancer is the most common cause of cancer-related mortality worldwide. It is a complex disease involving multiple genetic and epigenetic alterations. The development of transcriptomics revealed the important role of long non-coding RNAs (lncRNAs) in lung cancer occurrence and development. Here, microarray analysis of lung adenocarcinoma tissues showed the abnormal expression of lncRNA RGMB-AS1. However, the role of lncRNA RGMB-AS1 in lung adenocarcinoma remains largely unknown. We showed that upregulation of lncRNA RGMB-AS1 was significantly correlated with differentiation, TNM stage, and lymph node metastasis. In lung adenocarcinoma cells, downregulation of lncRNA RGMB-AS1 inhibited cell proliferation, migration, invasion, and caused cell cycle arrest at the G1/G0 phase. In vivo experiments showed that lncRNA RGMB-AS1 downregulation significantly suppressed the growth of lung adenocarcinoma. The expression of lncRNA RGMB-AS1 was inversely correlated with that of repulsive guidance molecule b (RGMB) in lung adenocarcinoma tissues, and UCSC analysis and fluorescence detection assay indicated that lncRNA RGMB-AS1 may be involved in the development of human lung adenocarcinoma by regulating RGMB expression though exon2 of RGMB. In summary, our findings indicate that lncRNA RGMB-AS1 may play an important role in lung adenocarcinoma and may serve as a potential therapeutic target.

Journal ArticleDOI
TL;DR: The functions and mechanisms of miR‐297 in lung cancer have, up to now, been largely undefined.
Abstract: Objectives Emerging studies have demonstrated that microRNAs (miRNAs) play crucial roles in carcinogenesis of many developing human tumours. However, the functions and mechanisms of miR-297 in lung cancer have, up to now, been largely undefined. Materials and methods Here, miR-297 expression was measured in lung adenocarcinoma tissues and cell lines, using qRT-PCR. Lung adenocarcinoma cell line was treated with an miR-297 mimic. MTT and colony analysis were performed to detect cell proliferation and colony formation. The direct target gene of miR-297 was assessed by qRT-PCR, Western blotting and luciferase assays. Results We demonstrated that miR-297 expression was upregulated in lung adenocarcinomas compared to adjacent normal tissues. Expression of miR-297 was also upregulated in tested lung adenocarcinoma cell lines. Ectopic expression of miR-297 enhanced lung adenocarcinoma cell proliferation and colony formation. Furthermore, overexpression of miR-297 promoted cell migration and invasion. In addition, we identified Glypican-5 (GPC5) as a direct target gene of miR-297 in lung adenocarcinoma cells. Expression of GPC5 was downregulated in both lung adenocarcinoma tissues and cell lines. Moreover, expression of GPC5 was inversely associated with expression of miR-297 in lung adenocarcinoma tissues. Conclusions These results suggest that miR-297 acted as an oncogenic miRNA, partly by targeting GPC5, adenocarcinoma of the lung.

Journal ArticleDOI
TL;DR: The present study revealed that elevated expression of LCN2 significantly induced metastasis via EMT via NF-κB cellular signaling, and revealed a molecular mechanistic approach for 2DG-guided molecular imaging-based cancer therapy using BRM270 as a novel cancer therapeutic drug to enhance the effect of doxorubicin (Dox)-resistantLCN2induced metastasis of solid tumors in nude mice.
Abstract: Tumor initiating cancer stem-like cells (TICSCs) have recently become the object of intensive study. Human-Lipocalin-2 (hLCN2) acts as a biomarker for cancers. The aim of the present study was to explore new insights regarding the potential role of LCN2 in inducing epithelial to mesenchymal transition (EMT) by transfecting LCN2 into CD133+-A549-TICSCs and its cross-talk with the NF-κB signaling pathway in adenocarcinoma of the lung. Furthermore, EMT was confirmed by transcriptomic analysis, immunoblotting and immunocyto/histochemical analyses. Tumorigenesis and metastasis were confirmed by molecular therapeutics tracer 2DG infrared optical probe in BALB/cSIc-nude mice. It was observed that the CD133+-expressing-LCN2-A549 TICSCs population increased in adenocarcinoma of the lung compared to the normal lung tissue. The expressions of genes involved in stemness, adhesion, motility and drug efflux was higher in these cells than in their non-LCN2 expressing counterparts. The present study revealed that elevated expression of LCN2 significantly induced metastasis via EMT. Overexpression of LCN2 significantly increased stemness and tumor metastasis by modulating NF-κB cellular signaling. BRM270, a novel inhibitor of NF-κB plays a significant role in the EMT reversal. BRM270, a naturaceutical induces cell shrinkage, karyorrhexis and programmed cell death (PCD) which were observed by Hoechst 33342 staining while flow cytometry analysis showed significant (P<0.05) decrease in cell population from G0-G1 phases. Also, 2DG guided in vivo model revealed that BRRM270 significantly (P<0.0003) reduced tumor metastasis and increased percent survival in real-time with complete resection. An elaborate study on the novel concept with respect to linking of naturaceutics as selective and potential anticancer agent that eliminates the elevated LCN2 induced EMT and tumor dissemination through cooperation with the NF-κB signaling as the baseline data for the planning of new therapeutic strategies was conducted for the first time. Our results also illustrate a molecular mechanistic approach for 2DG-guided molecular imaging-based cancer therapy using BRM270 as a novel cancer therapeutic drug to enhance the effect of doxorubicin (Dox)-resistant LCN2 induced metastasis of solid tumors in nude mice.

Journal ArticleDOI
TL;DR: CK5 and p40 are good diagnostic markers for squamous cell carcinoma and superior to p63, and it may be useful to combine NAPA and TTF-1 for increased sensitivity in lung cancer diagnostics.
Abstract: Histopathologic classification of cancer in the lung is important for choice of treatment. Cytokeratin 5 (CK5), p63, and p40 are commonly used immunohistochemical markers for squamous cell carcinoma, and napsin A (NAPA) and thyroid transcription factor 1 (TTF-1) are markers for adenocarcinoma of the lung. The aim of the present study was to evaluate these 5 markers and to compare different commercially available antibody clones in lung cancer. Tissue microarrays including 557 cases of surgically treated primary tumors and 73 matched metastases of non-small cell lung carcinoma were stained with CK5, p63, p40 (monoclonal and polyclonal), NAPA (5 different clones/protocols), and TTF-1 (2 different clones). The sensitivity and specificity to separate squamous cell carcinomas from non-small cell carcinomas of nonsquamous type were 95% and 97%, respectively, for CK5, 95% and 87% for p63, 94% and 96% for p40, 75% to 79% and 96% to 98% for the NAPA clones/protocols and 80% to 85% and 95% to 97% for the TTF-1 clones. A combination of NAPA and TTF-1 resulted in a higher sensitivity (85% to 88%), whereas combining CK5 and p40 did not increase the diagnostic performance. The sensitivity was generally lower in evaluation of lung cancer metastases. The κ-values for comparison of staining results between monoclonal and polyclonal p40 and between the 5 NAPA clones/protocols were 0.97 to 1.0, whereas the corresponding figure for the 2 TTF-1 clones was 0.91 to 0.93. Conclusively, CK5 and p40 are good diagnostic markers for squamous cell carcinoma and superior to p63. In addition, it may be useful to combine NAPA and TTF-1 for increased sensitivity in lung cancer diagnostics. There is no substantial difference between monoclonal and polyclonal p40 and between different NAPA clones, whereas there is a difference between the TTF-1 clones 8G7G3/1 and SPT24.

Journal ArticleDOI
TL;DR: The findings indicate differences in the rates of positive and negative labelling with these two antibodies, and suggest the potential for misclassification of a proportion of squamous carcinomas of the lung as adenocarcinoma, and for misdiagnosis of some sarcomatoid mesotheliomas as sarcom atoid carcinoma of the Lung.
Abstract: Immunohistochemical detection of thyroid transcription factor-1 (TTF-1) plays an important role in the diagnosis and subclassification of non-small cell carcinomas of the lung in biopsy and some cytology samples, specifically for identification of squamous cell carcinoma (classically negative) and non-mucinous adenocarcinoma (positive in most cases) and for discrimination between lung adenocarcinoma and pleural malignant mesothelioma (classically negative). Aims and methods We carried out a comparison of the widely used mouse monoclonal TTF-1 antibody based on the 8G7G3/1 clone versus the more recently introduced rabbit monoclonal antibody (MAb) based on the SP141 clone. Results Both antibodies labelled alveolar epithelium in normal lung parenchyma, but the SP141 antibody also labelled bronchial mucosal basal cells. All 13 cases of atypical squamous lesions (including one case of bronchial squamous dysplasia) were negative with the 8G7G3/1 antibody, but 6/13 cases of squamous carcinoma/dysplasia showed positive nuclear labelling with the SP141 antibody in the same tissue biopsy. All 35 cases of adenocarcinoma of the lung were positive with both antibodies. For 12 cases of sarcomatoid carcinoma of the lung, two cases were labelled with the 8G7G3/1 antibody, whereas positive labelling of 4/12 cases was observed with SP141. All 66 cases of epithelioid malignant mesothelioma were negative with both antibodies, but 8/19 cases of sarcomatoid mesothelioma showed positive nuclear labelling with the SP141 antibody (0/19 with 8G7G3/1). Conclusions Our findings indicate differences in the rates of positive and negative labelling with these two antibodies, and suggest the potential for misclassification of a proportion of squamous carcinomas of the lung as adenocarcinoma, and for misdiagnosis of some sarcomatoid mesotheliomas as sarcomatoid carcinoma of the lung. If the results of SP141 are assigned overriding significance, our findings further indicate that in isolation, neither negative labelling with either 8G7G3/1 or SP141 nor positive labelling with the SP141 MAb discriminates between sarcomatoid carcinoma and sarcomatoid mesothelioma, whereas positive labelling with the 8G7G3/1 MAb favours a diagnosis of sarcomatoid carcinoma. The literature suggests that these seemingly ‘aberrant’ results with the SP141 antibody are not ‘false’ positives, but rather real detection of low levels of TTF-1 protein in a broader range of tumours than is widely recognised.

Journal ArticleDOI
20 Jun 2016-PLOS ONE
TL;DR: The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.
Abstract: Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter–driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter’s tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP’s gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter–driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk–carrying JCPyV VLPs. In mice injected with pSPB-tk–carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

Journal ArticleDOI
TL;DR: Mucin‐rich lung adenocarcinomas have peculiar pathological and molecular features that might suggest the need for a differentially tailored therapeutic approach compared with that to conventional lung ADC.

Journal ArticleDOI
06 Apr 2016-PLOS ONE
TL;DR: It is demonstrated that GSK-3α is regulated by CREB in lung cancer and is required for the cell viability and implicate CREB-GSK-3 α axis as a novel therapeutic target for lung cancer treatment.
Abstract: Overexpression or activation of cyclic AMP-response element-binding protein (CREB) has been known to be involved in several human malignancies, including lung cancer. Genes regulated by CREB have been reported to suppress apoptosis, induce cell proliferation, inflammation, and tumor metastasis. However, the critical target genes of CREB in lung cancer have not been well understood. Here, we identified GSK-3α as one of the CREB target genes which is critical for the viability of lung cancer cells. The CREB knockdown significantly reduced the expression of GSK-3α and the direct binding of CREB on the promoter of GSK3A was identified. Kaplan-Meier analysis with a public database showed a prognostic significance of aberrant GSK-3α expression in lung cancer. Inhibition of GSK-3α suppressed cell viability, colony formation, and tumor growth. For the first time, we demonstrated that GSK-3α is regulated by CREB in lung cancer and is required for the cell viability. These findings implicate CREB-GSK-3α axis as a novel therapeutic target for lung cancer treatment.

Journal ArticleDOI
31 Mar 2016-PLOS ONE
TL;DR: The present study reinforces the use of EGFR tyrosine kinase inhibition (TKI) as a first line treatment of choice for advanced adenocarcinoma of the lung carrying an activating EGFR mutation.
Abstract: Introduction Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibition is the preferred first-line treatment of advanced adenocarcinoma of the lung that harbors EGFR activating tyrosine kinase domain mutations. Most data available pertain to Asian populations in which such mutations are more prevalent. We report on the long-term results of first-line treatment with erlotinib in Caucasian patients with advanced adenocarcinoma of the lung that have a somatic EGFR mutation in their tumor.

Journal ArticleDOI
TL;DR: Osimertinib is able to inhibit the growth of a radiotherapy- and surgery-refractory EGFR T790M-positive brain metastasis in a patient with lung adenocarcinoma, demonstrating that re-biopsy in EGFR-mutated non-small cell lung cancer patients with acquired TKI resistance should be performed.
Abstract: Background: Osimertinib (AZD9291, Tagrisso) is a potent, irreversible third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI). Case Report: Our report demonstrates that osimertinib is able to inhibit the growth of a radiotherapy- and surgery-refractory EGFR T790M-positive brain metastasis in a patient with lung adenocarcinoma. Conclusion: These data show that re-biopsy in EGFR-mutated non-small cell lung cancer patients with acquired TKI resistance should be performed.

Journal ArticleDOI
TL;DR: The results suggest that some cell adhesion or structural stabilization molecules are differently expressed depending on MCPyV infection status, and this data will give important insights to develop novel molecular target therapies for MCCs.

Journal ArticleDOI
31 Aug 2016-PLOS ONE
TL;DR: It is shown that the expression of BRD7 was downregulated in lung adenocarcinoma tissues and cells and was associated with shortened disease-free survival, consistent with a tumor suppressor role forBRD7 in lungAdenocARCinoma tumorigenesis.
Abstract: Lung cancer is one of the most malignant tumors and the leading cause of cancer-related deaths worldwide. Among lung cancers, 40% are diagnosed as adenocarcinoma. Bromodomain containing 7 (BRD7) is a member of bromodomain-containing protein family. It was proved to be downregulated in various cancers. However, the role of BRD7 in lung adenocarcinoma is still unknown. Western blot and qRT-PCR was performed to measure the BRD7 expression in lung adenocarcinoma tissues and cells. CCK8 and migration assay was done to detect the functional role of BRD7 in lung adenocarcinoma. In this study, we showed that the expression of BRD7 was downregulated in lung adenocarcinoma tissues and cells. The lower of BRD7 levels in patients with lung adenocarcinoma was associated with shortened disease-free survival. Furthermore, overexpression of BRD7 inhibited lung adenocarcinoma cell proliferation and migration. Inhibition of BRD7 expression promoted cell proliferation and migration by activating ERK phosphorylation. Overexpression of BRD7 inhibited cyclin D and myc expression. Our findings are consistent with a tumor suppressor role for BRD7 in lung adenocarcinoma tumorigenesis.