scispace - formally typeset
Search or ask a question

Showing papers on "Cloud computing published in 2018"


Journal ArticleDOI
TL;DR: The definition of MEC, its advantages, architectures, and application areas are provided; where the security and privacy issues and related existing solutions are also discussed.
Abstract: Mobile edge computing (MEC) is an emergent architecture where cloud computing services are extended to the edge of networks leveraging mobile base stations. As a promising edge technology, it can be applied to mobile, wireless, and wireline scenarios, using software and hardware platforms, located at the network edge in the vicinity of end-users. MEC provides seamless integration of multiple application service providers and vendors toward mobile subscribers, enterprises, and other vertical segments. It is an important component in the 5G architecture which supports variety of innovative applications and services where ultralow latency is required. This paper is aimed to present a comprehensive survey of relevant research and technological developments in the area of MEC. It provides the definition of MEC, its advantages, architectures, and application areas; where we in particular highlight related research and future directions. Finally, security and privacy issues and related existing solutions are also discussed.

1,815 citations


Journal ArticleDOI
TL;DR: This article first introduces deep learning for IoTs into the edge computing environment, and designs a novel offloading strategy to optimize the performance of IoT deep learning applications with edge computing.
Abstract: Deep learning is a promising approach for extracting accurate information from raw sensor data from IoT devices deployed in complex environments Because of its multilayer structure, deep learning is also appropriate for the edge computing environment Therefore, in this article, we first introduce deep learning for IoTs into the edge computing environment Since existing edge nodes have limited processing capability, we also design a novel offloading strategy to optimize the performance of IoT deep learning applications with edge computing In the performance evaluation, we test the performance of executing multiple deep learning tasks in an edge computing environment with our strategy The evaluation results show that our method outperforms other optimization solutions on deep learning for IoT

1,270 citations


Journal ArticleDOI
TL;DR: The main goal of this study is to holistically analyze the security threats, challenges, and mechanisms inherent in all edge paradigms, while highlighting potential synergies and venues of collaboration.

1,045 citations


Journal ArticleDOI
TL;DR: A comprehensive survey, analyzing how edge computing improves the performance of IoT networks and considers security issues in edge computing, evaluating the availability, integrity, and the confidentiality of security strategies of each group, and proposing a framework for security evaluation of IoT Networks with edge computing.
Abstract: The Internet of Things (IoT) now permeates our daily lives, providing important measurement and collection tools to inform our every decision. Millions of sensors and devices are continuously producing data and exchanging important messages via complex networks supporting machine-to-machine communications and monitoring and controlling critical smart-world infrastructures. As a strategy to mitigate the escalation in resource congestion, edge computing has emerged as a new paradigm to solve IoT and localized computing needs. Compared with the well-known cloud computing, edge computing will migrate data computation or storage to the network “edge,” near the end users. Thus, a number of computation nodes distributed across the network can offload the computational stress away from the centralized data center, and can significantly reduce the latency in message exchange. In addition, the distributed structure can balance network traffic and avoid the traffic peaks in IoT networks, reducing the transmission latency between edge/cloudlet servers and end users, as well as reducing response times for real-time IoT applications in comparison with traditional cloud services. Furthermore, by transferring computation and communication overhead from nodes with limited battery supply to nodes with significant power resources, the system can extend the lifetime of the individual nodes. In this paper, we conduct a comprehensive survey, analyzing how edge computing improves the performance of IoT networks. We categorize edge computing into different groups based on architecture, and study their performance by comparing network latency, bandwidth occupation, energy consumption, and overhead. In addition, we consider security issues in edge computing, evaluating the availability, integrity, and the confidentiality of security strategies of each group, and propose a framework for security evaluation of IoT networks with edge computing. Finally, we compare the performance of various IoT applications (smart city, smart grid, smart transportation, and so on) in edge computing and traditional cloud computing architectures.

1,008 citations


Journal ArticleDOI
TL;DR: The role of big data in supporting smart manufacturing is discussed, a historical perspective to data lifecycle in manufacturing is overviewed, and a conceptual framework proposed in the paper is proposed.

937 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain.
Abstract: In the era of the Internet of Things (IoT), an enormous amount of sensing devices collect and/or generate various sensory data over time for a wide range of fields and applications. Based on the nature of the application, these devices will result in big or fast/real-time data streams. Applying analytics over such data streams to discover new information, predict future insights, and make control decisions is a crucial process that makes IoT a worthy paradigm for businesses and a quality-of-life improving technology. In this paper, we provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain. We start by articulating IoT data characteristics and identifying two major treatments for IoT data from a machine learning perspective, namely IoT big data analytics and IoT streaming data analytics. We also discuss why DL is a promising approach to achieve the desired analytics in these types of data and applications. The potential of using emerging DL techniques for IoT data analytics are then discussed, and its promises and challenges are introduced. We present a comprehensive background on different DL architectures and algorithms. We also analyze and summarize major reported research attempts that leveraged DL in the IoT domain. The smart IoT devices that have incorporated DL in their intelligence background are also discussed. DL implementation approaches on the fog and cloud centers in support of IoT applications are also surveyed. Finally, we shed light on some challenges and potential directions for future research. At the end of each section, we highlight the lessons learned based on our experiments and review of the recent literature.

903 citations


Journal ArticleDOI
TL;DR: A survey of IoT and Cloud Computing with a focus on the security issues of both technologies is presented, and it shows how the Cloud Computing technology improves the function of the IoT.

894 citations


Journal ArticleDOI
TL;DR: This paper proposes to exploit the concept of Fog Computing in Healthcare IoT systems by forming a Geo-distributed intermediary layer of intelligence between sensor nodes and Cloud and presents a prototype of a Smart e-Health Gateway called UT-GATE.

867 citations


Journal ArticleDOI
TL;DR: This paper investigates the task offloading problem in ultra-dense network aiming to minimize the delay while saving the battery life of user’s equipment and proposes an efficient offloading scheme which can reduce 20% of the task duration with 30% energy saving.
Abstract: With the development of recent innovative applications (e.g., augment reality, self-driving, and various cognitive applications), more and more computation-intensive and data-intensive tasks are delay-sensitive. Mobile edge computing in ultra-dense network is expected as an effective solution for meeting the low latency demand. However, the distributed computing resource in edge cloud and energy dynamics in the battery of mobile device makes it challenging to offload tasks for users. In this paper, leveraging the idea of software defined network, we investigate the task offloading problem in ultra-dense network aiming to minimize the delay while saving the battery life of user’s equipment. Specifically, we formulate the task offloading problem as a mixed integer non-linear program which is NP-hard. In order to solve it, we transform this optimization problem into two sub-problems, i.e., task placement sub-problem and resource allocation sub-problem. Based on the solution of the two sub-problems, we propose an efficient offloading scheme. Simulation results prove that the proposed scheme can reduce 20% of the task duration with 30% energy saving, compared with random and uniform task offloading schemes.

821 citations


Journal ArticleDOI
TL;DR: A thorough review on how to adapt blockchain to the specific needs of IoT in order to develop Blockchain-based IoT (BIoT) applications is presented and some recommendations are enumerated with the aim of guiding future BIoT researchers and developers on some of the issues that will have to be tackled before deploying the next generation of BIeT applications.
Abstract: The paradigm of Internet of Things (IoT) is paving the way for a world, where many of our daily objects will be interconnected and will interact with their environment in order to collect information and automate certain tasks. Such a vision requires, among other things, seamless authentication, data privacy, security, robustness against attacks, easy deployment, and self-maintenance. Such features can be brought by blockchain, a technology born with a cryptocurrency called Bitcoin. In this paper, a thorough review on how to adapt blockchain to the specific needs of IoT in order to develop Blockchain-based IoT (BIoT) applications is presented. After describing the basics of blockchain, the most relevant BIoT applications are described with the objective of emphasizing how blockchain can impact traditional cloud-centered IoT applications. Then, the current challenges and possible optimizations are detailed regarding many aspects that affect the design, development, and deployment of a BIoT application. Finally, some recommendations are enumerated with the aim of guiding future BIoT researchers and developers on some of the issues that will have to be tackled before deploying the next generation of BIoT applications.

755 citations


Journal ArticleDOI
TL;DR: A hierarchical architecture of the smart factory was proposed first, and then the key technologies were analyzed from the aspects of the physical resource layer, the network layer, and the data application layer, which showed that the overall equipment effectiveness of the equipment is significantly improved.
Abstract: Due to the current structure of digital factory, it is necessary to build the smart factory to upgrade the manufacturing industry. Smart factory adopts the combination of physical technology and cyber technology and deeply integrates previously independent discrete systems making the involved technologies more complex and precise than they are now. In this paper, a hierarchical architecture of the smart factory was proposed first, and then the key technologies were analyzed from the aspects of the physical resource layer, the network layer, and the data application layer. In addition, we discussed the major issues and potential solutions to key emerging technologies, such as Internet of Things (IoT), big data, and cloud computing, which are embedded in the manufacturing process. Finally, a candy packing line was used to verify the key technologies of smart factory, which showed that the overall equipment effectiveness of the equipment is significantly improved.

Journal ArticleDOI
TL;DR: It is proposed that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other, and needs a multi-layer architecture.

Journal ArticleDOI
TL;DR: Fog computing is not a substitute for cloud computing but a powerful complement as discussed by the authors, which enables processing at the edge while still offering the possibility to interact with the cloud. But it still faces several challenges, such as the distance between the cloud and the end devices.
Abstract: Cloud computing with its three key facets (i.e., Infrastructure-as-a-Service, Platform-as-a-Service, and Software-as-a-Service) and its inherent advantages (e.g., elasticity and scalability) still faces several challenges. The distance between the cloud and the end devices might be an issue for latency-sensitive applications such as disaster management and content delivery applications. Service level agreements (SLAs) may also impose processing at locations where the cloud provider does not have data centers. Fog computing is a novel paradigm to address such issues. It enables provisioning resources and services outside the cloud, at the edge of the network, closer to end devices, or eventually, at locations stipulated by SLAs. Fog computing is not a substitute for cloud computing but a powerful complement. It enables processing at the edge while still offering the possibility to interact with the cloud. This paper presents a comprehensive survey on fog computing. It critically reviews the state of the art in the light of a concise set of evaluation criteria. We cover both the architectures and the algorithms that make fog systems. Challenges and research directions are also introduced. In addition, the lessons learned are reviewed and the prospects are discussed in terms of the key role fog is likely to play in emerging technologies such as tactile Internet.

Journal ArticleDOI
TL;DR: The potential to use the Blockchain technology to protect healthcare data hosted within the cloud and the practical challenges of such a proposition are described and further research is described.
Abstract: One particular trend observed in healthcare is the progressive shift of data and services to the cloud, partly due to convenience (e.g. availability of complete patient medical history in real-time) and savings (e.g. economics of healthcare data management). There are, however, limitations to using conventional cryptographic primitives and access control models to address security and privacy concerns in an increasingly cloud-based environment. In this paper, we study the potential to use the Blockchain technology to protect healthcare data hosted within the cloud. We also describe the practical challenges of such a proposition and further research that is required.

Journal ArticleDOI
TL;DR: Results show that as the number of applications demanding real-time service increases, the fog computing paradigm outperforms traditional cloud computing.
Abstract: This work performs a rigorous, comparative analysis of the fog computing paradigm and the conventional cloud computing paradigm in the context of the Internet of Things (IoT), by mathematically formulating the parameters and characteristics of fog computing—one of the first attempts of its kind. With the rapid increase in the number of Internet-connected devices, the increased demand of real-time, low-latency services is proving to be challenging for the traditional cloud computing framework. Also, our irreplaceable dependency on cloud computing demands the cloud data centers (DCs) always to be up and running which exhausts huge amount of power and yield tons of carbon dioxide ( $\text{CO}_2$ ) gas. In this work, we assess the applicability of the newly proposed fog computing paradigm to serve the demands of the latency-sensitive applications in the context of IoT. We model the fog computing paradigm by mathematically characterizing the fog computing network in terms of power consumption, service latency, $\text{CO}_2$ emission, and cost, and evaluating its performance for an environment with high number of Internet-connected devices demanding real-time service. A case study is performed with traffic generated from the $100$ highest populated cities being served by eight geographically distributed DCs. Results show that as the number of applications demanding real-time service increases, the fog computing paradigm outperforms traditional cloud computing. For an environment with $50$ percent applications requesting for instantaneous, real-time services, the overall service latency for fog computing is noted to decrease by $50.09$ percent. However, it is mentionworthy that for an environment with less percentage of applications demanding for low-latency services, fog computing is observed to be an overhead compared to the traditional cloud computing. Therefore, the work shows that in the context of IoT, with high number of latency-sensitive applications fog computing outperforms cloud computing.

Journal ArticleDOI
TL;DR: This survey paper investigates the key rationale, the state-of-the-art efforts, the key enabling technologies and research topics, and typical IoT applications benefiting from edge cloud.
Abstract: The Internet is evolving rapidly toward the future Internet of Things (IoT) which will potentially connect billions or even trillions of edge devices which could generate huge amount of data at a very high speed and some of the applications may require very low latency. The traditional cloud infrastructure will run into a series of difficulties due to centralized computation, storage, and networking in a small number of datacenters, and due to the relative long distance between the edge devices and the remote datacenters. To tackle this challenge, edge cloud and edge computing seem to be a promising possibility which provides resources closer to the resource-poor edge IoT devices and potentially can nurture a new IoT innovation ecosystem. Such prospect is enabled by a series of emerging technologies, including network function virtualization and software defined networking. In this survey paper, we investigate the key rationale, the state-of-the-art efforts, the key enabling technologies and research topics, and typical IoT applications benefiting from edge cloud. We aim to draw an overall picture of both ongoing research efforts and future possible research directions through comprehensive discussions.

Journal ArticleDOI
TL;DR: The results of the evaluation show that performance is improved by reducing the induced delay, reducing the response time, increasing throughput, and the ability to detect real-time attacks in the IoT network with low performance overheads.
Abstract: The recent expansion of the Internet of Things (IoT) and the consequent explosion in the volume of data produced by smart devices have led to the outsourcing of data to designated data centers However, to manage these huge data stores, centralized data centers, such as cloud storage cannot afford auspicious way There are many challenges that must be addressed in the traditional network architecture due to the rapid growth in the diversity and number of devices connected to the internet, which is not designed to provide high availability, real-time data delivery, scalability, security, resilience, and low latency To address these issues, this paper proposes a novel blockchain-based distributed cloud architecture with a software defined networking (SDN) enable controller fog nodes at the edge of the network to meet the required design principles The proposed model is a distributed cloud architecture based on blockchain technology, which provides low-cost, secure, and on-demand access to the most competitive computing infrastructures in an IoT network By creating a distributed cloud infrastructure, the proposed model enables cost-effective high-performance computing Furthermore, to bring computing resources to the edge of the IoT network and allow low latency access to large amounts of data in a secure manner, we provide a secure distributed fog node architecture that uses SDN and blockchain techniques Fog nodes are distributed fog computing entities that allow the deployment of fog services, and are formed by multiple computing resources at the edge of the IoT network We evaluated the performance of our proposed architecture and compared it with the existing models using various performance measures The results of our evaluation show that performance is improved by reducing the induced delay, reducing the response time, increasing throughput, and the ability to detect real-time attacks in the IoT network with low performance overheads

Journal ArticleDOI
TL;DR: This article reviews the state-of-the-art of existing DSC literature in detail and identifies key limitations and prospects, summarizes prior research and identifies knowledge gaps by providing advantages, weaknesses and limitations of individual methods.

Book ChapterDOI
01 Jan 2018
TL;DR: This chapter comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and presents a taxonomy of Fog computing according to the identified challenges and its key features.
Abstract: In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named “Fog computing” has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features. We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research.

Journal ArticleDOI
TL;DR: The architecture and features of fog computing are reviewed and critical roles of fog nodes are studied, including real-time services, transient storage, data dissemination and decentralized computation, which are expected to draw more attention and efforts into this new architecture.
Abstract: Internet of Things (IoT) allows billions of physical objects to be connected to collect and exchange data for offering various applications, such as environmental monitoring, infrastructure management, and home automation. On the other hand, IoT has unsupported features (e.g., low latency, location awareness, and geographic distribution) that are critical for some IoT applications, including smart traffic lights, home energy management and augmented reality. To support these features, fog computing is integrated into IoT to extend computing, storage and networking resources to the network edge. Unfortunately, it is confronted with various security and privacy risks, which raise serious concerns towards users. In this survey, we review the architecture and features of fog computing and study critical roles of fog nodes, including real-time services, transient storage, data dissemination and decentralized computation. We also examine fog-assisted IoT applications based on different roles of fog nodes. Then, we present security and privacy threats towards IoT applications and discuss the security and privacy requirements in fog computing. Further, we demonstrate potential challenges to secure fog computing and review the state-of-the-art solutions used to address security and privacy issues in fog computing for IoT applications. Finally, by defining several open research issues, it is expected to draw more attention and efforts into this new architecture.

Journal ArticleDOI
TL;DR: This survey starts by providing an overview and fundamental of fog computing architecture, and provides an extensive overview of state-of-the-art network applications and major research aspects to design these networks.
Abstract: Fog computing is an emerging paradigm that extends computation, communication, and storage facilities toward the edge of a network. Compared to traditional cloud computing, fog computing can support delay-sensitive service requests from end-users (EUs) with reduced energy consumption and low traffic congestion. Basically, fog networks are viewed as offloading to core computation and storage. Fog nodes in fog computing decide to either process the services using its available resource or send to the cloud server. Thus, fog computing helps to achieve efficient resource utilization and higher performance regarding the delay, bandwidth, and energy consumption. This survey starts by providing an overview and fundamental of fog computing architecture. Furthermore, service and resource allocation approaches are summarized to address several critical issues such as latency, and bandwidth, and energy consumption in fog computing. Afterward, compared to other surveys, this paper provides an extensive overview of state-of-the-art network applications and major research aspects to design these networks. In addition, this paper highlights ongoing research effort, open challenges, and research trends in fog computing.

Journal ArticleDOI
TL;DR: The changing cloud infrastructure is discussed and the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers is considered, leading to a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.

Journal ArticleDOI
TL;DR: This paper proposes an integrated framework that can enable dynamic orchestration of networking, caching, and computing resources to improve the performance of next generation vehicular networks and formulate the resource allocation strategy in this framework as a joint optimization problem.
Abstract: The developments of connected vehicles are heavily influenced by information and communications technologies, which have fueled a plethora of innovations in various areas, including networking, caching, and computing. Nevertheless, these important enabling technologies have traditionally been studied separately in the existing works on vehicular networks. In this paper, we propose an integrated framework that can enable dynamic orchestration of networking, caching, and computing resources to improve the performance of next generation vehicular networks. We formulate the resource allocation strategy in this framework as a joint optimization problem, where the gains of not only networking but also caching and computing are taken into consideration in the proposed framework. The complexity of the system is very high when we jointly consider these three technologies. Therefore, we propose a novel deep reinforcement learning approach in this paper. Simulation results with different system parameters are presented to show the effectiveness of the proposed scheme.

Journal ArticleDOI
20 Dec 2018-Sensors
TL;DR: A detailed and complex case-study has been presented to validate the solution in the context of a system that dynamically reverse the traveling direction of a road segment, with all the safety conditions in place.
Abstract: The new Internet of Things/Everything (IoT/IoE) paradigm and architecture allows one to rethink the way Smart City infrastructures are designed and managed, but on the other hand, a number of problems have to be solved. In terms of mobility the cities that embrace the sensoring era can take advantage of this disruptive technology to improve the quality of life of their citizens, also thanks to the rationalization in the use of their resources. In Sii-Mobility, a national smart city project on mobility and transportation, a flexible platform has been designed and here, in this paper, is presented. It permits one to set up heterogeneous and complex scenarios that integrate sensors/actuators as IoT/IoE in an overall Big Data, Machine Learning and Data Analytics scenario. A detailed and complex case-study has been presented to validate the solution in the context of a system that dynamically reverse the traveling direction of a road segment, with all the safety conditions in place. This case study composes several building blocks of the IoT platform, which demonstrate that a flexible and dynamic set-up is possible, supporting security, safety, local, cloud and mixed solutions.

Journal ArticleDOI
TL;DR: An experimental evaluation of edge computing and its enabling technologies in a selected use case represented by mobile gaming shows that edge computing is necessary to meet the latency requirements of applications involving virtual and augmented reality.
Abstract: The amount of data generated by sensors, actuators, and other devices in the Internet of Things (IoT) has substantially increased in the last few years IoT data are currently processed in the cloud, mostly through computing resources located in distant data centers As a consequence, network bandwidth and communication latency become serious bottlenecks This paper advocates edge computing for emerging IoT applications that leverage sensor streams to augment interactive applications First, we classify and survey current edge computing architectures and platforms, then describe key IoT application scenarios that benefit from edge computing Second, we carry out an experimental evaluation of edge computing and its enabling technologies in a selected use case represented by mobile gaming To this end, we consider a resource-intensive 3-D application as a paradigmatic example and evaluate the response delay in different deployment scenarios Our experimental results show that edge computing is necessary to meet the latency requirements of applications involving virtual and augmented reality We conclude by discussing what can be achieved with current edge computing platforms and how emerging technologies will impact on the deployment of future IoT applications

Journal ArticleDOI
TL;DR: This survey provides a holistic overview on the exploitation of MEC technology for the realization of IoT applications and their synergies and discusses the technical aspects of enabling MEC in IoT and provides some insight into various other integration technologies therein.
Abstract: The Internet of Things (IoT) has recently advanced from an experimental technology to what will become the backbone of future customer value for both product and service sector businesses. This underscores the cardinal role of IoT on the journey toward the fifth generation of wireless communication systems. IoT technologies augmented with intelligent and big data analytics are expected to rapidly change the landscape of myriads of application domains ranging from health care to smart cities and industrial automations. The emergence of multi-access edge computing (MEC) technology aims at extending cloud computing capabilities to the edge of the radio access network, hence providing real-time, high-bandwidth, low-latency access to radio network resources. IoT is identified as a key use case of MEC, given MEC’s ability to provide cloud platform and gateway services at the network edge. MEC will inspire the development of myriads of applications and services with demand for ultralow latency and high quality of service due to its dense geographical distribution and wide support for mobility. MEC is therefore an important enabler of IoT applications and services which require real-time operations. In this survey, we provide a holistic overview on the exploitation of MEC technology for the realization of IoT applications and their synergies. We further discuss the technical aspects of enabling MEC in IoT and provide some insight into various other integration technologies therein.

Journal ArticleDOI
TL;DR: This paper studies the data storage and sharing scheme for decentralized storage systems and proposes a framework that combines the decentralized storage system interplanetary file system, the Ethereum blockchain, and ABE technology, and solves the problem that the cloud server may not return all of the results searched or return wrong results.
Abstract: In traditional cloud storage systems, attribute-based encryption (ABE) is regarded as an important technology for solving the problem of data privacy and fine-grained access control. However, in all ABE schemes, the private key generator has the ability to decrypt all data stored in the cloud server, which may bring serious problems such as key abuse and privacy data leakage. Meanwhile, the traditional cloud storage model runs in a centralized storage manner, so single point of failure may leads to the collapse of system. With the development of blockchain technology, decentralized storage mode has entered the public view. The decentralized storage approach can solve the problem of single point of failure in traditional cloud storage systems and enjoy a number of advantages over centralized storage, such as low price and high throughput. In this paper, we study the data storage and sharing scheme for decentralized storage systems and propose a framework that combines the decentralized storage system interplanetary file system, the Ethereum blockchain, and ABE technology. In this framework, the data owner has the ability to distribute secret key for data users and encrypt shared data by specifying access policy, and the scheme achieves fine-grained access control over data. At the same time, based on smart contract on the Ethereum blockchain, the keyword search function on the cipher text of the decentralized storage systems is implemented, which solves the problem that the cloud server may not return all of the results searched or return wrong results in the traditional cloud storage systems. Finally, we simulated the scheme in the Linux system and the Ethereum official test network Rinkeby, and the experimental results show that our scheme is feasible.

Book
01 Jan 2018
TL;DR: This handbook presents the systems, tools, and services of the leading providers of cloud computing; including Google, Yahoo, Amazon, IBM, and Microsoft.
Abstract: Cloud computing has become a significant technology trend Experts believe cloud computing is currently reshaping information technology and the IT marketplace The advantages of using cloud computing include cost savings, speed to market, access to greater computing resources, high availability, and scalability Handbook of Cloud Computing includes contributions from world experts in the field of cloud computing from academia, research laboratories and private industry This book presents the systems, tools, and services of the leading providers of cloud computing; including Google, Yahoo, Amazon, IBM, and Microsoft The basic concepts of cloud computing and cloud computing applications are also introduced Current and future technologies applied in cloud computing are also discussed Case studies, examples, and exercises are provided throughout Handbook of Cloud Computing is intended for advanced-level students and researchers in computer science and electrical engineering as a reference book This handbook is also beneficial to computer and system infrastructure designers, developers, business managers, entrepreneurs and investors within the cloud computing related industry

Journal ArticleDOI
TL;DR: This paper tackles the computation offloading problem in a mixed fog/cloud system by jointly optimizing the offloading decisions and the allocation of computation resource, transmit power, and radio bandwidth while guaranteeing user fairness and maximum tolerable delay.
Abstract: Cooperation between the fog and the cloud in mobile cloud computing environments could offer improved offloading services to smart mobile user equipment (UE) with computation intensive tasks. In this paper, we tackle the computation offloading problem in a mixed fog/cloud system by jointly optimizing the offloading decisions and the allocation of computation resource, transmit power, and radio bandwidth while guaranteeing user fairness and maximum tolerable delay. This optimization problem is formulated to minimize the maximal weighted cost of delay and energy consumption (EC) among all UEs, which is a mixed-integer non-linear programming problem. Due to the NP-hardness of the problem, we propose a low-complexity suboptimal algorithm to solve it, where the offloading decisions are obtained via semidefinite relaxation and randomization, and the resource allocation is obtained using fractional programming theory and Lagrangian dual decomposition. Simulation results are presented to verify the convergence performance of our proposed algorithms and their achieved fairness among UEs, and the performance gains in terms of delay, EC, and the number of beneficial UEs over existing algorithms.

Journal ArticleDOI
TL;DR: A novel concept of edge computing for mobile blockchain and an economic approach for edge computing resource management are introduced and a prototype of mobile edge computing enabled blockchain systems are presented with experimental results to justify the proposed concept.
Abstract: Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications (e.g., finance, healthcare, and logistics), its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data (i.e., a block) to the blockchain. Solving the proof of work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.