scispace - formally typeset
Search or ask a question

Showing papers on "Coronal mass ejection published in 2015"


Journal ArticleDOI
TL;DR: The Solar Wind Ion Analyzer (SWIA) as discussed by the authors was used on the MAVEN mission to measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock.
Abstract: The Solar Wind Ion Analyzer (SWIA) on the MAVEN mission will measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock. The solar wind flux provides one of the key energy inputs that can drive atmospheric escape from the Martian system, as well as in part controlling the structure of the magnetosphere through which non-thermal ion escape must take place. SWIA measurements contribute to the top level MAVEN goals of characterizing the upper atmosphere and the processes that operate there, and parameterizing the escape of atmospheric gases to extrapolate the total loss to space throughout Mars’ history. To accomplish these goals, SWIA utilizes a toroidal energy analyzer with electrostatic deflectors to provide a broad 360∘×90∘ field of view on a 3-axis spacecraft, with a mechanical attenuator to enable a very high dynamic range. SWIA provides high cadence measurements of ion velocity distributions with high energy resolution (14.5 %) and angular resolution (3.75∘×4.5∘ in the sunward direction, 22.5∘×22.5∘ elsewhere), and a broad energy range of 5 eV to 25 keV. Onboard computation of bulk moments and energy spectra enable measurements of the basic properties of the solar wind at 0.25 Hz.

338 citations


Journal ArticleDOI
TL;DR: In this paper, the magnetic conditions that prevented eruption and the consequences that ensued were studied, and the authors found that the solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years.
Abstract: Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be "big but mild"; its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.

229 citations


Journal ArticleDOI
TL;DR: This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain the authors' models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.
Abstract: Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the “classical” interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which “pseudo waves” are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

196 citations


Journal ArticleDOI
TL;DR: A synthesis of data from seven different space missions of a fast CME, which originated in an active region near the disk centre and, hence, a significant geomagnetic impact was forecasted, is demonstrated to be channelled during eruption into a direction +37±10° away from its source region, leading only to minimalGeomagnetic effects.
Abstract: Coronal mass ejections from the Sun play an important role in space weather, yet a full understanding of their behaviour remains elusive. Towards this aim, Mostl et al. present a suite of observations showing that an ejection was channelled away from its source region, explaining incorrect forecasts.

187 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the decayless regime of coronal kink oscillations recently discovered in the Solar Dynamics Observatory (SDO)/AIA data and estimated the prevalence of this phenomenon and its characteristic signatures.
Abstract: Context. We investigate the decayless regime of coronal kink oscillations recently discovered in the Solar Dynamics Observatory (SDO)/AIA data. In contrast to decaying kink oscillations that are excited by impulsive dynamical processes, this type of transverse oscillations is not connected to any external impulsive impact, such as a flare or coronal mass ejection, and does not show any significant decay. Moreover the amplitude of these decayless oscillations is typically lower than that of decaying oscillations. Aims. The aim of this research is to estimate the prevalence of this phenomenon and its characteristic signatures. Methods. We analysed 21 active regions (NOAA 11637–11657) observed in January 2013 in the 171 A channel of SDO/AIA. For each active region we inspected six hours of observations, constructing time-distance plots for the slits positioned across pronounced bright loops. The oscillatory patterns in time-distance plots were visually identified and the oscillation periods and amplitudes were measured. We also estimated the length of each oscillating loop. Results. Low-amplitude decayless kink oscillations are found to be present in the majority of the analysed active regions. The oscillation periods lie in the range from 1.5 to 10 min. In two active regions with insufficient observation conditions we did not identify any oscillation patterns. The oscillation periods are found to increase with the length of the oscillating loop. Conclusions. The considered type of coronal oscillations is a common phenomenon in the corona. The established dependence of the oscillation period on the loop length is consistent with their interpretation in terms of standing kink waves.

168 citations


Journal ArticleDOI
TL;DR: In this article, the authors summarized the processes that can account for the build-up and release of energy during solar flares, focusing on the development of recent 3D numerical simulations that explain many of the observed flare features.
Abstract: Solar flares are energetic events taking place in the Sun’s atmosphere, and their effects can greatly impact the environment of the surrounding planets. In particular, eruptive flares, as opposed to confined flares, launch coronal mass ejections into the interplanetary medium, and as such, are one of the main drivers of space weather. After briefly reviewing the main characteristics of solar flares, we summarise the processes that can account for the build-up and release of energy during their evolution. In particular, we focus on the development of recent 3D numerical simulations that explain many of the observed flare features. These simulations can also provide predictions of the dynamical evolution of coronal and photospheric magnetic field. Here we present a few observational examples that, together with numerical modelling, point to the underlying physical mechanisms of the eruptions.

168 citations


Journal ArticleDOI
TL;DR: In this paper, the impact of the magnetic field inclination and photospheric field distribution on the generation and properties of two morphologically different types of solar jets, straight and helical, was studied.
Abstract: Context. Jets are dynamic, impulsive, well-collimated plasma events developing at many different scales and in different layers of the solar atmosphere. Aims. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Studying their dynamics can help us to better understand the processes acting in larger eruptive events (e.g., flares and coronal mass ejections) as well as mass, magnetic helicity, and energy transfer at all scales in the solar atmosphere. The relative simplicity of their magnetic geometry and topology, compared with larger solar active events, makes jets ideal candidates for studying the fundamental role of reconnection in energetic events.Methods. In this study, using our recently developed numerical solver ARMS, we present several parametric studies of a 3D numerical magneto-hydrodynamic model of solar-jet-like events. We studied the impact of the magnetic field inclination and photospheric field distribution on the generation and properties of two morphologically different types of solar jets, straight and helical, which can account for the observed so-called standard and blowout jets.Results. Our parametric studies validate our model of jets for different geometric properties of the magnetic configuration. We find that a helical jet is always triggered for the range of parameters we tested. This demonstrates that the 3D magnetic null-point configuration is a very robust structure for the energy storage and impulsive release characteristic of helical jets. In certain regimes determined by magnetic geometry, a straight jet precedes the onset of a helical jet. We show that the reconnection occurring during the straight-jet phase influences the triggering of the helical jet. Conclusions. Our results allow us to better understand the energization, triggering, and driving processes of straight and helical jets. Our model predicts the impulsiveness and energetics of jets in terms of the surrounding magnetic field configuration. Finally, we discuss the interpretation of the observationally defined standard and blowout jets in the context of our model, as well as the physical factors that determine which type of jet will occur.

163 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review some key observations relevant to the current theoretical trigger mechanisms of the eruption and to the energy release via reconnection, and discuss various mechanisms that have been proposed to trigger CMEs and their observable signatures.
Abstract: Eruptions, flares, and coronal mass ejection (CMEs) are due to physical phenomena mainly driven by an initially force-free current-carrying magnetic field. We review some key observations relevant to the current theoretical trigger mechanisms of the eruption and to the energy release via reconnection. Sigmoids observed in X-rays and UV, as well as the pattern (double J-shaped) of electric currents in the photosphere show clear evidence of the existence of currents parallel to the magnetic field and can be the signature of a flux rope that is detectable in CMEs. The magnetic helicity of filaments and active regions is an interesting indirectly measurable parameter because it can quantify the twist of the flux rope. On the other hand, the magnetic helicity of the solar structures allows us to associate solar eruptions and magnetic clouds in the heliosphere. The magnetic topology analysis based on the 3D magnetic field extrapolated from vector magnetograms is a good tool for identifying the reconnection locations (null points and/or the 3D large volumes – hyperbolic flux tube, HFT). Flares are associated more with quasi-separatrix layers (QSLs) and HFTs than with a single null point, which is a relatively rare case. We review various mechanisms that have been proposed to trigger CMEs and their observable signatures: by “breaking” the field lines overlying the flux rope or by reconnection below the flux rope to reduce the magnetic tension, or by letting the flux rope to expand until it reaches a minimum threshold height (loss of equilibrium or torus instability). Additional mechanisms are commonly operating in the solar atmosphere. Examples of observations are presented throughout the article and are discussed in this framework.

161 citations


Journal ArticleDOI
TL;DR: In this article, a detailed analysis of the confined X1.6 flare on October 22, 2014 is presented, showing that a large number of electrons were accelerated to non-thermal energies, revealing a steep power-law spectrum.
Abstract: The unusually large active region (AR) NOAA 2192, observed in 2014 October, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north?south oriented magnetic system of arcade fields served as a strong top and lateral confinement for a series of large two-ribbon flares originating from the core of the AR. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this AR was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power-law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 1025 J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.

147 citations


Journal ArticleDOI
TL;DR: In this article, the authors quantify and provide a broader context to this process, starting from 263 tabulated interplanetary coronal mass ejections, including MCs, observed over a time period covering 17 years and at a distance of 1 AU from the Sun with Wind (1995-2008) and the two STEREO (2009-2012) spacecraft.
Abstract: Several recent studies suggest that magnetic reconnection is able to erode substantial amounts of the outer magnetic flux of interplanetary magnetic clouds (MCs) as they propagate in the heliosphere. We quantify and provide a broader context to this process, starting from 263 tabulated interplanetary coronal mass ejections, including MCs, observed over a time period covering 17 years and at a distance of 1 AU from the Sun with Wind (1995–2008) and the two STEREO (2009–2012) spacecraft. Based on several quality factors, including careful determination of the MC boundaries and main magnetic flux rope axes, an analysis of the azimuthal flux imbalance expected from erosion by magnetic reconnection was performed on a subset of 50 MCs. The results suggest that MCs may be eroded at the front or at rear and in similar proportions, with a significant average erosion of about 40% of the total azimuthal magnetic flux. We also searched for in situ signatures of magnetic reconnection causing erosion at the front and rear boundaries of these MCs. Nearly ~30% of the selected MC boundaries show reconnection signatures. Given that observations were acquired only at 1 AU and that MCs are large-scale structures, this finding is also consistent with the idea that erosion is a common process. Finally, we studied potential correlations between the amount of eroded azimuthal magnetic flux and various parameters such as local magnetic shear, Alfven speed, and leading and trailing ambient solar wind speeds. However, no significant correlations were found, suggesting that the locally observed parameters at 1 AU are not likely to be representative of the conditions that prevailed during the erosion which occurred during propagation from the Sun to 1 AU. Future heliospheric missions, and in particular Solar Orbiter or Solar Probe Plus, will be fully geared to answer such questions.

140 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present full-Sun spectral images from Hinode, combined with magnetic modelling, to produce a solar wind source map, which is used to identify the source of the slow component of the solar wind.
Abstract: Both fast and slow solar winds emanate from our Sun, although the source of the slow component remains elusive. Towards identifying this, Brooks et al. present full-Sun spectral images from Hinode, combined with magnetic modelling, to produce a solar wind source map.

Journal ArticleDOI
TL;DR: A statistical analysis of the relationship between solar energetic particles (SEPs) and properties of solar flares and coronal mass ejections (CMEs) is presented in this article.
Abstract: A statistical analysis of the relationship between solar energetic particles (SEPs) and properties of solar flares and coronal mass ejections (CMEs) is presented. SEP events during Solar Cycle 23 are selected that are associated with solar flares originating in the visible hemisphere of the Sun and that are at least of magnitude M1. Taking into account all flares and CMEs that occurred during this period, the probability for the occurrence of an SEP event near Earth is determined. A strong rise of this probability is observed for increasing flare intensities, more western locations, higher CME speeds, and halo CMEs. The correlations between the proton peak flux and these solar parameters are derived for a low (> 10 MeV) and high (> 60 MeV) energy range excluding any flux enhancement due to the passage of fast interplanetary shocks. The obtained correlation coefficients are 0.55±0.07 (0.63±0.06) with flare intensity, and 0.56±0.08 (0.40±0.09) with CME speed for E>10 MeV (E>60 MeV). For both energy ranges, the correlations with flare longitude and CME width are very weak or non-existent. Furthermore, the occurrence probabilities, correlation coefficients, and mean peak fluxes are derived in multi-dimensional bins combining the aforementioned solar parameters. The correlation coefficients are also determined in different proton energy channels ranging from 5 to 200 MeV. The results show that the correlation between the proton peak flux and the CME speed decreases with energy, while the correlation with the flare intensity shows the opposite behaviour. Furthermore, the correlation with the CME speed is stronger than the correlation with the flare intensity below 15 MeV and becomes weaker above 20 MeV. When the enhancements in the flux profiles due to interplanetary shocks are not excluded, only a small but not very significant change is observed in the correlation coefficients between the proton peak flux below 7 MeV and the CME speed.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the processes that can account for the build up and release of energy during solar flares and present a few observational examples that, together with numerical modelling, point to the underlying physical mechanisms of the eruptions.
Abstract: Solar flares are energetic events taking place in the Sun's atmosphere, and their effects can greatly impact the environment of the surrounding planets. In particular, eruptive flares, as opposed to confined flares, launch coronal mass ejections into the interplanetary medium, and as such, are one of the main drivers of space weather. After briefly reviewing the main characteristics of solar flares, we summarize the processes that can account for the build up and release of energy during their evolution. In particular, we focus on the development of recent 3D numerical simulations that explain many of the observed flare features. These simulations can also provide predictions of the dynamical evolution of coronal and photospheric magnetic field. Here we present a few observational examples that, together with numerical modelling, point to the underlying physical mechanisms of the eruptions.

Journal ArticleDOI
TL;DR: In this paper, the magnetic conditions that prevented eruption and the consequences that ensued were studied, and the authors found that the solar active region (AR) 12192 of October 2014 hosts the largest sunspot group in 24 years.
Abstract: Solar active region (AR) 12192 of October 2014 hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be "big but mild"; its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.

Journal ArticleDOI
TL;DR: In this article, the authors present a statistical study of prominence and filament eruptions observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Several properties are recorded for 904 events that were culled from the Heliophysics Event Knowledgebase (HEK) and incorporated into an online catalog for general use.
Abstract: We present a statistical study of prominence and filament eruptions observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Several properties are recorded for 904 events that were culled from the Heliophysics Event Knowledgebase (HEK) and incorporated into an online catalog for general use. These characteristics include the filament and eruption type, eruption symmetry and direction, apparent twisting and writhing motions, and the presence of vertical threads and coronal cavities. Associated flares and white-light coronal mass ejections (CME) are also recorded. Total rates are given for each property along with how they differ among filament types. We also examine the kinematics of 106 limb events to characterize the distinct slow- and fast-rise phases often exhibited by filament eruptions. The average fast-rise onset height, slow-rise duration, slow-rise velocity, maximum field-of-view (FOV) velocity, and maximum FOV acceleration are 83 Mm, 4.4 hours, 2.1 km s−1, 106 km s−1, and 111 m s−2, respectively. All parameters exhibit lognormal probability distributions similar to that of CME speeds. A positive correlation between latitude and fast-rise onset height is found, which we attribute to a corresponding negative correlation in the average vertical magnetic field gradient, or decay index, estimated from potential field source surface (PFSS) extrapolations. We also find the decay index at the fast-rise onset point to be 1.1 on average, consistent with the critical instability threshold theorized for straight current channels. Finally, we explore relationships between the derived kinematics properties and apparent twisting motions. We find that events with evident twist have significantly faster CME speeds and significantly lower fast-rise onset heights, suggesting relationships between these values and flux rope helicity.

Journal ArticleDOI
TL;DR: It is deduced that activity band interaction can qualitatively explain the ‘Gnevyshev Gap'—a well-established feature of flare and sunspot occurrence and will considerably improve forecast capability in space weather and solar activity over a range of timescales.
Abstract: Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun’s deep interior. Here we deduce that activity band interaction can qualitatively explain the ‘Gnevyshev Gap’—a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the relationship between kink oscillations of coronal loops and lower coronal (r 1.4R� ) eruptions and plasma ejections, coronal mass ejections (CMEs), and coronal Type-II radio bursts.
Abstract: Context. Solar flares are often accompanied by kink (transverse) oscillations of coronal loops. Despite intensive study of these oscillations in recent years, the mechanisms that excite them are still not known. Aims. We aim to clarify the excitation mechanisms for these kink oscillations of coronal loops. Methods. Weanalysed 58 kink-oscillation events observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) during its first four years (2010‐2014) with the use of the JHelioviewer. Association of these oscillation events with flares, lower coronal (r 1.4R� ) eruptions and plasma ejections, coronal mass ejections (CMEs), and coronal Type-II radio bursts is studied. Results. We find that 44 of these 58 oscillation events (76%) were associated with CMEs observed in the white light emission. Moreover, 57 events (98%) were accompanied by lower coronal eruptions/ejections (LCEs) observed in the extreme-ultraviolet band in the parental active regions. In the remaining event an LCE was not clearly seen, but it was definitely associated with a CME too. The main observational finding is that the kink oscillations were excited by the deviation of loops from their equilibria by a nearby LCE in 55 events (95%). In three remaining events, it was difficult to reliably determine the cause of the oscillations because of limitations in the observational data. We also found that 53 events (91%) were associated with flares. In five remaining events, the parental active regions were behind the limb and we could not directly see flare sites. It indicates that there is a close relationship between these two kinds of solar activity. However, the estimated speeds of a hypothetical driver of kink oscillations by flares were found to be lower than 500 kms −1 in 80% of the cases. Such low speeds do not favour the association of the oscillation excitation with a shock wave, as usually assumed. That only 23 (40%) of the oscillation events were found to be associated with coronal Type-II radio bursts also goes against the shock wave mechanism for the excitation of kink oscillations. Conclusions. The statistical analysis shows that the most probable mechanism for exciting the kink oscillations of coronal loops is the deviation of loops from their equilibrium by nearby eruptions or plasma ejections rather than a blast shock wave ignited by a flare.

Journal ArticleDOI
TL;DR: In this paper, the authors explore the ramification of associating the energetics of extreme magnetic reconnection events with transient mass-loss in a stellar analogy with solar eruptive events and find that the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.
Abstract: We explore the ramification of associating the energetics of extreme magnetic reconnection events with transient mass-loss in a stellar analogy with solar eruptive events. We establish energy partitions relative to the total bolometric radiated flare energy for different observed components of stellar flares and show that there is rough agreement for these values with solar flares. We apply an equipartition between the bolometric radiated flare energy and kinetic energy in an accompanying mass ejection, seen in solar eruptive events and expected from reconnection. This allows an integrated flare rate in a particular waveband to be used to estimate the amount of associated transient mass-loss. This approach is supported by a good correspondence between observational flare signatures on high flaring rate stars and the Sun, which suggests a common physical origin. If the frequent and extreme flares that young solar-like stars and low-mass stars experience are accompanied by transient mass-loss in the form of coronal mass ejections, then the cumulative effect of this mass-loss could be large. We find that for young solar-like stars and active M dwarfs, the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a "pileup accident" hypothesis to explain the geoeffective solar wind structure which caused the largest magnetic storm so far during the solar cycle 24 on 17 March 2015.
Abstract: We propose a “pileup accident” hypothesis, based on the solar wind data analysis and magnetohydrodynamics modeling, to explain unexpectedly geoeffective solar wind structure which caused the largest magnetic storm so far during the solar cycle 24 on 17 March 2015: First, a fast coronal mass ejection with strong southward magnetic fields both in the sheath and in the ejecta was followed by a high-speed stream from a nearby coronal hole. This combination resulted in less adiabatic expansion than usual to keep the high speed, strong magnetic field, and high density within the coronal mass ejection. Second, preceding slow and high-density solar wind was piled up ahead of the coronal mass ejection just before the arrival at the Earth to further enhance its magnetic field and density. Finally, the enhanced solar wind speed, magnetic field, and density worked all together to drive the major magnetic storm.

Journal ArticleDOI
TL;DR: In this article, the authors used data at 131, 171, and 304 Å from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to search for hot flux ropes in 141 M-class and X-class solar flares that occurred at solar longitudes equal to or larger than 50°.
Abstract: We use data at 131, 171, and 304 Å from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to search for hot flux ropes in 141 M-class and X-class solar flares that occurred at solar longitudes equal to or larger than 50°. Half of the flares were associated with coronal mass ejections. The goal of our survey is to assess the frequency of hot flux ropes in large flares irrespective of their formation time relative to the onset of eruptions. The flux ropes were identified in 131 Å images using morphological criteria and their high temperatures were confirmed by their absence in the cooler 171 and 304 Å passbands. We found hot flux ropes in 45 of our events (32% of the flares); 11 of them were associated with confined flares while the remaining 34 were associated with eruptive flares. Therefore almost half (49%) of the eruptive events involved a hot flux rope configuration. The use of supplementary Hinode X-Ray Telescope data indicates that these percentages should be considered as lower limits of the actual rates of occurrence of hot flux ropes in large flares.

Journal ArticleDOI
TL;DR: The Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars orbiter has been collecting information on the Mars upper atmosphere, ionosphere, and solar and solar wind interactions since its orbit insertion in September 2014.
Abstract: The Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars orbiter has been gathering information on the Mars upper atmosphere, ionosphere, and solar and solar wind interactions since its orbit insertion in September 2014. MAVEN's science goals are to understand processes driving the escape of atmospheric gases to space at the present epoch, and their variations with solar and local heliospheric conditions together with geographical and seasonal influences. This introduction and the accompanying articles provide a selection of key results obtained up to the time of writing, including measurements of the overall geometry and variability of the Martian magnetosphere, upper atmosphere, and ionosphere and their responses to interplanetary coronal mass ejections and solar energetic particle influxes. The ultimate goal is to use these results to determine the integrated loss to space through time and its role in overall Mars atmosphere evolution.

Journal ArticleDOI
TL;DR: In this article, the authors compared the properties of magnetic clouds (MCs) during the first 73 months of solar cycles 23 and 24 in order to understand the weak geomagnetic activity in cycle 24.
Abstract: We report on a study that compares the properties of magnetic clouds (MCs) during the first 73 months of solar cycles 23 and 24 in order to understand the weak geomagnetic activity in cycle 24. We find that the number of MCs did not decline in cycle 24, although the average sunspot number is known to have declined by ~40%. Despite the large number of MCs, their geoeffectiveness in cycle 24 was very low. The average Dst index in the sheath and cloud portions in cycle 24 was −33 nT and −23 nT, compared to −66 nT and −55 nT, respectively, in cycle 23. One of the key outcomes of this investigation is that the reduction in the strength of geomagnetic storms as measured by the Dst index is a direct consequence of the reduction in the factor VBz (the product of the MC speed and the out-of-the-ecliptic component of the MC magnetic field). The reduction in MC-to-ambient total pressure in cycle 24 is compensated for by the reduction in the mean MC speed, resulting in the constancy of the dimensionless expansion rate at 1 AU. However, the MC size in cycle 24 was significantly smaller, which can be traced to the anomalous expansion of coronal mass ejections near the Sun reported by Gopalswamy et al. (2014a). One of the consequences of the anomalous expansion seems to be the larger heliocentric distance where the pressure balance between the CME flux ropes and the ambient medium occurs in cycle 24.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the propagation behavior of the CME shock and magnetic structure with the aim to reproduce the short transit time and high impact speed as derived from in situ data.
Abstract: The fast coronal mass ejection (CME) on 23 July 2012 caused attention because of its extremely short transit time from the Sun to 1 AU, which was shorter than 21 h. In situ data from STEREO-A revealed the arrival of a fast forward shock with a speed of more than 2200 km s−1 followed by a magnetic structure moving with almost 1900 km s−1. We investigate the propagation behavior of the CME shock and magnetic structure with the aim to reproduce the short transit time and high impact speed as derived from in situ data. We carefully measured the 3D kinematics of the CME using the graduated cylindrical shell model and obtained a maximum speed of 2580±280 km s−1 for the CME shock and 2270±420 km s−1 for its magnetic structure. Based on the 3D kinematics, the drag-based model (DBM) reproduces the observational data reasonably well. To successfully simulate the CME shock, the ambient flow speed needs to have an average value close to the slow solar wind speed (450 km s−1), and the initial shock speed at a distance of 30 R ⊙ should not exceed ≈ 2300 km s−1, otherwise it would arrive much too early at STEREO-A. The model results indicate that an extremely small aerodynamic drag force is exerted on the shock, smaller by one order of magnitude than average. As a consequence, the CME hardly decelerates in interplanetary space and maintains its high initial speed. The low aerodynamic drag can only be reproduced when the density of the ambient solar wind flow, in which the fast CME propagates, is decreased to ρ sw=1 – 2 cm−3 at the distance of 1 AU. This result is consistent with the preconditioning of interplanetary space by a previous CME.

Journal ArticleDOI
TL;DR: In this paper, the authors extend ForeCAT to include a three-dimensional description of the deflecting CME to answer the following questions: (1) do all CMEs deflect to the magnetic minimum? and (2) does most deflection occur within the first few solar radii (4 )?
Abstract: Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including any deflections close to the Sun or through interplanetary space. Kay et al. introduced ForeCAT, a model of CME deflection resulting from the background solar magnetic field. For a magnetic field solution corresponding to Carrington Rotation (CR) 2029 (declining phase, 2005 April–May), the majority of the CMEs deflected to the Heliospheric Current Sheet, the minimum in magnetic pressure on global scales. Most of the deflection occurred below 4 . Here we extend ForeCAT to include a three-dimensional description of the deflecting CME. We attempt to answer the following questions: (1) do all CMEs deflect to the magnetic minimum? and (2) does most deflection occur within the first few solar radii (4 )? Results for solar minimum and declining-phase CMEs show that not every CME deflects to the magnetic minimum and that typically the majority of the deflection occurs below 10 . Slow, wide, low-mass CMEs in declining-phase solar backgrounds with strong magnetic field and magnetic gradients exhibit the largest deflections. Local gradients related to active regions tend to cause the largest deviations from the deflection predicted by global magnetic gradients, but variations can also be seen for CMEs in the quiet-Sun regions of the declining-phase CR. We show the torques due to differential forces along the CME can cause rotation about the CME's toroidal axis.

Journal ArticleDOI
TL;DR: In this paper, a weakly-twisted magnetic flux rope (MFR) was found to have been formed during confined (i.e., not leading to major CMEs) flaring and sub-flaring events which took place the day before the two super-fast Coronal Mass Ejections (CMEs).
Abstract: NOAA Active Region (AR) 11429 was the source of twin super-fast Coronal Mass Ejections (CMEs). The CMEs took place within a hour from each other, with the onset of the first taking place in the beginning of March 7, 2012. This AR fulfills all the requirements for a "super active region"; namely, Hale's law incompatibility and a $\delta$-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ($D_{st}=-143$ nT) was associated with one of these events. Magnetic Flux Ropes (MFRs) are twisted magnetic structures in the corona, best seen in $\sim$10 MK hot plasma emission and are often considered the core of erupting structures. However, their "dormant" existence in the solar atmosphere (i.e. prior to eruptions), is an open question. Aided by multi-wavelength observations (SDO/HMI/AIA and STEREO EUVI B) and a Non-Linear Force-Free (NLFFF) model for the coronal magnetic field, our work uncovers two separate, weakly-twisted magnetic flux systems which suggest the existence of pre-eruption MFRs that eventually became the seeds of the two CMEs. The MFRs could have been formed during confined (i.e. not leading to major CMEs) flaring and sub-flaring events which took place the day before the two CMEs in the host AR 11429.

Journal ArticleDOI
TL;DR: In this article, the authors conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun, which was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission.
Abstract: Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

Journal ArticleDOI
TL;DR: In this paper, a review describes observations of the polar magnetic fields, models for the cyclical formation and decay of these fields, and evidence of their great influence in the solar atmosphere.
Abstract: This review describes observations of the polar magnetic fields, models for the cyclical formation and decay of these fields, and evidence of their great influence in the solar atmosphere. The polar field distribution dominates the global structure of the corona over most of the solar cycle, supplies the bulk of the interplanetary magnetic field via the polar coronal holes, and is believed to provide the seed for the creation of the activity cycle that follows. A broad observational knowledge and theoretical understanding of the polar fields is therefore an essential step towards a global view of solar and heliospheric magnetic fields. Analyses of both high-resolution and long-term synoptic observations of the polar fields are summarized. Models of global flux transport are reviewed, from the initial phenomenological and kinematic models of Babcock and Leighton to present-day attempts to produce time-dependent maps of the surface magnetic field and to explain polar field variations, including the weakness of the cycle 23 polar fields. The relevance of the polar fields to solar physics extends far beyond the surface layers from which the magnetic field measurements usually derive. As well as discussing the polar fields’ role in the interior as seed fields for new solar cycles, the review follows their influence outward to the corona and heliosphere. The global coronal magnetic structure is determined by the surface magnetic flux distribution, and is dominated on large scales by the polar fields. We discuss the observed effects of the polar fields on the coronal hole structure, and the solar wind and ejections that travel through the atmosphere. The review concludes by identifying gaps in our knowledge, and by pointing out possible future sources of improved observational information and theoretical understanding of these fields.

Journal ArticleDOI
TL;DR: In this article, the authors investigated two helical magnetic flux ropes (MFRs) in detail, whose eruptions produced two energetic solar flares and CMEs on 2014 April 18 and 2014 September 10, respectively.
Abstract: Helical magnetic flux rope (MFR) is a fundamental structure of coronal mass ejections (CMEs) and has been discovered recently to exist as a sigmoidal channel structure prior to its eruption in the EUV high-temperature passbands of the Atmospheric Imaging Assembly (AIA). However, when and where the MFR is built up are still elusive. In this paper, we investigate two MFRs (MFR1 and MFR2) in detail, whose eruptions produced two energetic solar flares and CMEs on 2014 April 18 and 2014 September 10, respectively. The AIA EUV images reveal that for a long time prior to their eruption, both MFR1 and MFR2 are under formation, which is probably through magnetic reconnection between two groups of sheared arcades driven by the shearing and converging flows in the photosphere near the polarity inversion line. At the footpoints of the MFR1, the Interface Region Imaging Spectrograph Si iv, C ii, and Mg ii lines exhibit weak to moderate redshifts and a non-thermal broadening in the pre-flare phase. However, a relatively large blueshift and an extremely strong non-thermal broadening are found at the formation site of the MFR2. These spectral features consolidate the proposition that the reconnection plays an important role in the formation of MFRs. For the MFR1, the reconnection outflow may propagate along its legs, penetrating into the transition region and the chromosphere at the footpoints. For the MFR2, the reconnection probably takes place in the lower atmosphere and results in the strong blueshift and non-thermal broadening for the Mg ii, C ii, and Si iv lines.

Journal ArticleDOI
TL;DR: In this article, a comprehensive analysis spanning over a solar cycle of the properties and drivers of traveling fast forward and fast reverse interplanetary shocks is presented, showing that fast forward shocks dominate over fast reverse shocks in all solar cycle phases except during solar minimum.
Abstract: We present a comprehensive statistical analysis spanning over a solar cycle of the properties and drivers of traveling fast forward and fast reverse interplanetary shocks. We combine statistics of 679 shocks between 1995 and 2013 identified from the near-Earth (Wind and ACE) and STEREO-A observations. We find that fast forward shocks dominate over fast reverse shocks in all solar cycle phases except during solar minimum. Nearly all fast reverse shocks are driven by slow-fast stream interaction regions (SIRs), while coronal mass ejections (CMEs) are the principal drivers of fast forward shocks in all phases except at solar minimum. The occurrence rate and median speeds of CME-driven fast forward shocks follow the sunspot cycle, while SIR-associated shocks do not show such correspondence. The strength of the shock (characterized by the magnetosonic Mach number and by the upstream to downstream magnetic field and density ratio) shows relatively little variations over solar cycle. However, the shocks were slightly stronger during the ascending phase of a relatively weak solar cycle 24 than during the previous ascending phase. The CME- and SIR-driven fast forward shocks and fast reverse shocks have distinct upstream solar wind conditions, which reflect to their relative strengths. We found that CME-driven shocks are on average stronger and faster, and they show broader distributions of shock parameters than the shocks driven by SIRs.

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: The results of a laboratory experiment reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt, and it is found that such ‘failed torus’ events occur when the guide magnetic field is strong enough to prevent the flux rope from kinking.
Abstract: Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.