scispace - formally typeset
Search or ask a question

Showing papers on "Ixodes ricinus published in 2022"


Journal ArticleDOI
TL;DR: Current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease are integrated into a conceptual framework that sheds light on the disorder that healthcare providers encounter.
Abstract: Lyme disease (Lyme borreliosis) is a tick-borne, zoonosis of adults and children caused by genospecies of the Borrelia burgdorferi sensu lato complex. The ailment, widespread throughout the Northern Hemisphere, continues to increase globally due to multiple environmental factors, coupled with increased incursion of humans into habitats that harbor the spirochete. B. burgdorferi sensu lato is transmitted by ticks from the Ixodes ricinus complex. In North America, B. burgdorferi causes nearly all infections; in Europe, B. afzelii and B. garinii are most associated with human disease. The spirochete's unusual fragmented genome encodes a plethora of differentially expressed outer surface lipoproteins that play a seminal role in the bacterium's ability to sustain itself within its enzootic cycle and cause disease when transmitted to its incidental human host. Tissue damage and symptomatology (i.e., clinical manifestations) result from the inflammatory response elicited by the bacterium and its constituents. The deposition of spirochetes into human dermal tissue generates a local inflammatory response that manifests as erythema migrans (EM), the hallmark skin lesion. If treated appropriately and early, the prognosis is excellent. However, in untreated patients, the disease may present with a wide range of clinical manifestations, most commonly involving the central nervous system, joints, or heart. A small percentage (~10%) of patients may go on to develop a poorly defined fibromyalgia-like illness, post-treatment Lyme disease (PTLD) unresponsive to prolonged antimicrobial therapy. Below we integrate current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease into a conceptual framework that sheds light on the disorder that healthcare providers encounter.

44 citations


Journal ArticleDOI
TL;DR: In this article , the authors integrate current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease into a conceptual framework that sheds light on the disorder that healthcare providers encounter.
Abstract: Lyme disease (Lyme borreliosis) is a tick-borne, zoonosis of adults and children caused by genospecies of the Borrelia burgdorferi sensu lato complex. The ailment, widespread throughout the Northern Hemisphere, continues to increase globally due to multiple environmental factors, coupled with increased incursion of humans into habitats that harbor the spirochete. B. burgdorferi sensu lato is transmitted by ticks from the Ixodes ricinus complex. In North America, B. burgdorferi causes nearly all infections; in Europe, B. afzelii and B. garinii are most associated with human disease. The spirochete's unusual fragmented genome encodes a plethora of differentially expressed outer surface lipoproteins that play a seminal role in the bacterium's ability to sustain itself within its enzootic cycle and cause disease when transmitted to its incidental human host. Tissue damage and symptomatology (i.e., clinical manifestations) result from the inflammatory response elicited by the bacterium and its constituents. The deposition of spirochetes into human dermal tissue generates a local inflammatory response that manifests as erythema migrans (EM), the hallmark skin lesion. If treated appropriately and early, the prognosis is excellent. However, in untreated patients, the disease may present with a wide range of clinical manifestations, most commonly involving the central nervous system, joints, or heart. A small percentage (~10%) of patients may go on to develop a poorly defined fibromyalgia-like illness, post-treatment Lyme disease (PTLD) unresponsive to prolonged antimicrobial therapy. Below we integrate current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease into a conceptual framework that sheds light on the disorder that healthcare providers encounter.

30 citations


Journal ArticleDOI
TL;DR: In this article , the authors present the current knowledge about the pathogens including their astonishing ability to overcome various host immune responses, regarding the main vector in Europe Ixodes ricinus, and the disease caused by Borreliae.
Abstract: Beside mosquitoes, ticks are well-known vectors of different human pathogens. In the Northern Hemisphere, Lyme borreliosis (Eurasia, LB) or Lyme disease (North America, LD) is the most commonly occurring vector-borne infectious disease caused by bacteria of the genus Borrelia which are transmitted by hard ticks of the genus Ixodes. The reported incidence of LB in Europe is about 22.6 cases per 100,000 inhabitants annually with a broad range depending on the geographical area analyzed. However, the epidemiological data are largely incomplete, because LB is not notifiable in all European countries. Furthermore, not only differ reporting procedures between countries, there is also variation in case definitions and diagnostic procedures. Lyme borreliosis is caused by several species of the Borrelia (B.) burgdorferi sensu lato (s.l.) complex which are maintained in complex networks including ixodid ticks and different reservoir hosts. Vector and host influence each other and are affected by multiple factors including climate that have a major impact on their habitats and ecology. To classify factors that influence the risk of transmission of B. burgdorferi s.l. to their different vertebrate hosts as well as to humans, we briefly summarize the current knowledge about the pathogens including their astonishing ability to overcome various host immune responses, regarding the main vector in Europe Ixodes ricinus, and the disease caused by borreliae. The research shows, that a higher standardization of case definition, diagnostic procedures, and standardized, long-term surveillance systems across Europe is necessary to improve clinical and epidemiological data.

19 citations


Journal ArticleDOI
TL;DR: Analysis of the available reports shows clear evidence of an increasing annual incidence of babesiosis across Europe in both humans and animals that is changing in line with similar increases in the incidence of other tick-borne diseases.
Abstract: There is now considerable evidence that in Europe, babesiosis is an emerging infectious disease, with some of the causative species spreading as a consequence of the increasing range of their tick vector hosts. In this review, we summarize both the historic records and recent findings on the occurrence and incidence of babesiosis in 20 European countries located in southeastern Europe (Bosnia and Herzegovina, Croatia, and Serbia), central Europe (Austria, the Czech Republic, Germany, Hungary, Luxembourg, Poland, Slovakia, Slovenia, and Switzerland), and northern and northeastern Europe (Lithuania, Latvia, Estonia, Iceland, Denmark, Finland, Sweden, and Norway), identified in humans and selected species of domesticated animals (cats, dogs, horses, and cattle). Recorded cases of human babesiosis are still rare, but their number is expected to rise in the coming years. This is because of the widespread and longer seasonal activity of Ixodes ricinus as a result of climate change and because of the more extensive use of better molecular diagnostic methods. Bovine babesiosis has a re-emerging potential because of the likely loss of herd immunity, while canine babesiosis is rapidly expanding in central and northeastern Europe, its occurrence correlating with the rapid, successful expansion of the ornate dog tick (Dermacentor reticulatus) populations in Europe. Taken together, our analysis of the available reports shows clear evidence of an increasing annual incidence of babesiosis across Europe in both humans and animals that is changing in line with similar increases in the incidence of other tick-borne diseases. This situation is of major concern, and we recommend more extensive and frequent, standardized monitoring using a “One Health” approach.

19 citations


Journal ArticleDOI
TL;DR: This review synthesizes the results of over 100 publications on questing I. ricinus and Borrelia spp.
Abstract: For more than three decades, it has been recognized that Ixodes ricinus ticks occur in urban green space in Europe and that they harbour multiple pathogens linked to both human and animal diseases. Urban green space use for health and well‐being, climate mitigation or biodiversity goals is promoted, often without consideration for the potential impact on tick encounters or tick‐borne disease outcomes. This review synthesizes the results of over 100 publications on questing I. ricinus and Borrelia spp. infections in ticks in urban green space in 24 European countries. It presents data on several risk indicators for Lyme borreliosis and highlights key research gaps and recommendations for future studies. Across Europe, mean density of I. ricinus in urban green space was 6.9 (range; 0.1–28.8) per 100 m2 and mean Borrelia prevalence was 17.3% (range; 3.1%–38.1%). Similar density estimates were obtained for nymphs, which had a Borrelia prevalence of 14.2% (range; 0.5%–86.7%). Few studies provided data on both questing nymph density and Borrelia prevalence, but those that did found an average of 1.7 (range; 0–5.6) Borrelia‐infected nymphs per 100 m2 of urban green space. Although a wide range of genospecies were reported, Borrelia afzelii was the most common in most parts of Europe, except for England where B. garinii was more common. The emerging pathogen Borrelia miyamotoi was also found in several countries, but with a much lower prevalence (1.5%). Our review highlights that I. ricinus and tick‐borne Borrelia pathogens are found in a wide range of urban green space habitats and across several seasons. The impact of human exposure to I. ricinus and subsequent Lyme borreliosis incidence in urban green space has not been quantified. There is also a need to standardize sampling protocols to generate better baseline data for the density of ticks and Borrelia prevalence in urban areas.

16 citations


Journal ArticleDOI
TL;DR: In this article , the authors used a comprehensive occurrence data set based on several databases and publications and six bioclimatic variables in a maximum entropy approach to project the climatic suitability for the three tick species Ixodes ricinus , Dermacentor reticulatus and Deneracentor marginatus under current and future climate conditions in Europe.
Abstract: Abstract Tick-borne diseases are a major health problem worldwide and could become even more important in Europe in the future. Due to changing climatic conditions, ticks are assumed to be able to expand their ranges in Europe towards higher latitudes and altitudes, which could result in an increased occurrence of tick-borne diseases. There is a great interest to identify potential (new) areas of distribution of vector species in order to assess the future infection risk with vector-borne diseases, improve surveillance, to develop more targeted monitoring program, and, if required, control measures. Based on an ecological niche modelling approach we project the climatic suitability for the three tick species Ixodes ricinus , Dermacentor reticulatus and Dermacentor marginatus under current and future climatic conditions in Europe. These common tick species also feed on humans and livestock and are vector competent for a number of pathogens. For niche modelling, we used a comprehensive occurrence data set based on several databases and publications and six bioclimatic variables in a maximum entropy approach. For projections, we used the most recent IPCC data on current and future climatic conditions including four different scenarios of socio-economic developments. Our models clearly support the assumption that the three tick species will benefit from climate change with projected range expansions towards north-eastern Europe and wide areas in central Europe with projected potential co-occurrence. A higher tick biodiversity and locally higher abundances might increase the risk of tick-borne diseases, although other factors such as pathogen prevalence and host abundances are also important.

12 citations


Journal ArticleDOI
TL;DR: The combination of high-throughput screening of TBPs and One Health approaches might help characterize chains of infection leading to human infection by TBPs, as well as prevalence of emerging rickettsial pathogens in the Balkan region.
Abstract: Ticks carry numerous pathogens that, if transmitted, can cause disease in susceptible humans and animals. The present study describes our approach on how to investigate clinical presentations following tick bites in humans. To this aim, the occurrence of major tick-borne pathogens (TBPs) in human blood samples (n = 85) and the ticks collected (n = 93) from the same individuals were tested using an unbiased high-throughput pathogen detection microfluidic system. The clinical symptoms were characterized in enrolled patients. In patients with suspected TBP infection, serological assays were conducted to test for the presence of antibodies against specific TBPs. A field study based on One Health tenets was further designed to identify components of a potential chain of infection resulting in Rickettsia felis infection in one of the patients. Ticks species infesting humans were identified as Ixodes ricinus, Rhipicephalus sanguineus sensu lato (s.l.), Dermacentor reticulatus, and Haemaphysalis punctata. Five patients developed local skin lesions at the site of the tick bite including erythema migrans, local non-specific reactions, and cutaneous hypersensitivity reaction. Although Borrelia burgdorferi s.l., Babesia microti, Anaplasma phagocytophilum, and Candidatus Cryptoplasma sp. DNAs were detected in tick samples, different Rickettsia species were the most common TBPs identified in the ticks. The presence of TBPs such as Rickettsia helvetica, Rickettsia monacensis, Borrelia lusitaniae, Borrelia burgdorferi, Borrelia afzelii, A. phagocytophilum, and B. microti in ticks was further confirmed by DNA sequencing. Two of the patients with local skin lesions had IgG reactive against spotted fever group rickettsiae, while IgM specific to B. afzelii, Borrelia garinii, and Borrelia spielmanii were detected in the patient with erythema migrans. Although R. felis infection was detected in one human blood sample, none of the components of the potential chain of infection considered in this study tested positive to this pathogen either using direct pathogen detection in domestic dogs or xenodiagnosis in ticks collected from domestic cats. The combination of high-throughput screening of TBPs and One Health approaches might help characterize chains of infection leading to human infection by TBPs, as well as prevalence of emerging rickettsial pathogens in the Balkan region.

12 citations


Journal ArticleDOI
TL;DR: In this paper , the authors present an up-to-date distribution map of Dermacentor reticulatus in the Czech Republic based on material and data obtained during a nationwide citizen science campaign.
Abstract: Abstract Background The range of the ornate dog tick Dermacentor reticulatus is rapidly expanding in Europe. This tick species is the vector of canine babesiosis, caused by Babesia canis , and also plays a role in the transmission of Theileria equi and Babesia caballi in equids. Methods The geographic range of D. reticulatus in the Czech Republic was re-assessed, and an up-to-date distribution map is presented based on material and data obtained during a nationwide citizen science campaign. Received and flagged individuals of D. reticulatus were also analysed for the presence of B. canis DNA. Results In striking contrast to historical records, D. reticulatus was found in all regions of the Czech Republic, with most reports coming from the southeast and northwest of the country. Between February 2018 and June 2021, the project team received 558 photo reports of ticks and 250 packages containing ticks. Of the former, 71.1% were identified as Dermacentor sp. with the remainder identified as Ixodes sp., Haemaphysalis sp., Argas sp. or Hyalomma sp. The majority of specimens in the subset of ticks that were received ( N = 610) were D. reticulatus ( N = 568, 93.7%), followed by Ixodes ricinus and Hyalomma spp. A total of 783 adult D. reticulatus , either received (568) or collected by flagging (215), were tested for the presence of B. canis DNA using species-specific nested PCR targeting part of the 18S rRNA gene; B. canis DNA was demonstrated in 22 samples (2.81%). Conclusions The continuous spread of D. reticulatus in the Czech Republic was documented in this study. In addition, DNA of B. canis was also detected in a number of ticks, suggesting the establishment of B. canis in the Czech Republic. These results suggest that veterinarians need to consider the possibility of canine babesiosis even in dogs without a history of travel. Graphical Abstract

12 citations


Journal ArticleDOI
TL;DR: In this paper , the authors present an up-to-date distribution map of Dermacentor reticulatus in the Czech Republic based on material and data obtained during a nationwide citizen science campaign.
Abstract: Abstract Background The range of the ornate dog tick Dermacentor reticulatus is rapidly expanding in Europe. This tick species is the vector of canine babesiosis, caused by Babesia canis , and also plays a role in the transmission of Theileria equi and Babesia caballi in equids. Methods The geographic range of D. reticulatus in the Czech Republic was re-assessed, and an up-to-date distribution map is presented based on material and data obtained during a nationwide citizen science campaign. Received and flagged individuals of D. reticulatus were also analysed for the presence of B. canis DNA. Results In striking contrast to historical records, D. reticulatus was found in all regions of the Czech Republic, with most reports coming from the southeast and northwest of the country. Between February 2018 and June 2021, the project team received 558 photo reports of ticks and 250 packages containing ticks. Of the former, 71.1% were identified as Dermacentor sp. with the remainder identified as Ixodes sp., Haemaphysalis sp., Argas sp. or Hyalomma sp. The majority of specimens in the subset of ticks that were received ( N = 610) were D. reticulatus ( N = 568, 93.7%), followed by Ixodes ricinus and Hyalomma spp. A total of 783 adult D. reticulatus , either received (568) or collected by flagging (215), were tested for the presence of B. canis DNA using species-specific nested PCR targeting part of the 18S rRNA gene; B. canis DNA was demonstrated in 22 samples (2.81%). Conclusions The continuous spread of D. reticulatus in the Czech Republic was documented in this study. In addition, DNA of B. canis was also detected in a number of ticks, suggesting the establishment of B. canis in the Czech Republic. These results suggest that veterinarians need to consider the possibility of canine babesiosis even in dogs without a history of travel. Graphical Abstract

12 citations


Journal ArticleDOI
TL;DR: In this paper , the bacterial communities of I. ricinus across its developmental stages and six geographic locations were explored by the 16S rRNA amplicon sequencing, combined with quantification of the bacterial load.
Abstract: Abstract Background Ixodes ricinus ticks vector pathogens that cause serious health concerns. Like in other arthropods, the microbiome may affect the tick’s biology, with consequences for pathogen transmission. Here, we explored the bacterial communities of I. ricinus across its developmental stages and six geographic locations by the 16S rRNA amplicon sequencing, combined with quantification of the bacterial load. Results A wide range of bacterial loads was found. Accurate quantification of low microbial biomass samples permitted comparisons to high biomass samples, despite the presence of contaminating DNA. The bacterial communities of ticks were associated with geographical location rather than life stage, and differences in Rickettsia abundance determined this association. Subsequently, we explored the geographical distribution of four vertically transmitted symbionts identified in the microbiome analysis. For that, we screened 16,555 nymphs from 19 forest sites for R. helvetica , Rickettsiella spp., Midichloria mitochondrii , and Spiroplasma ixodetis . Also, the infection rates and distributions of these symbionts were compared to the horizontally transmitted pathogens Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum , and Neoehrlichia mikurensis . The infection rates of all vertically transmitted symbionts differed between the study sites, and none of the symbionts was present in all tested ticks suggesting a facultative association with I. ricinus . The proportions in which symbionts occurred in populations of I. ricinus were highly variable, but geographically close study sites expressed similar proportions. These patterns were in contrast to what we observed for horizontally transmitted pathogens. Lastly, nearly 12% of tested nymphs were free of any targeted microorganisms, which is in line with the microbiome analyses. Conclusions Our results show that the microbiome of I. ricinus is highly variable, but changes gradually and ticks originating from geographically close forest sites express similar bacterial communities. This suggests that geography-related factors affect the infection rates of vertically transmitted symbionts in I. ricinus . Since some symbionts, such as R. helvetica can cause disease in humans, we propose that public health investigations consider geographical differences in its infection rates.

11 citations


Journal ArticleDOI
TL;DR: In this article , the authors summarized the knowledge of the food-borne TBEV transmission and presented methods for the prevention of its spread and suggested that milk and dairy products should be checked for the presence of TBE viruses prior to distribution.
Abstract: Tick-borne encephalitis (TBE) is the most common viral neurological disease in Eurasia. It is usually transmitted via tick bites but can also occur through ingestion of TBEV-infected milk and dairy products. The present paper summarises the knowledge of the food-borne TBEV transmission and presents methods for the prevention of its spread. The incidence of milk-borne TBE outbreaks is recorded in central, eastern, and north-eastern Europe, where Ixodes ricinus, Ixodes persulcatus, and/or Dermacentor reticulatus ticks, i.e., the main vectors of TBEV, occur abundantly. The growing occurrence range and population size of these ticks increases the risk of infection of dairy animals, i.e., goats, sheep, and cows, with viruses transmitted by these ticks. Consumers of unpasteurised milk and dairy products purchased from local farms located in TBE endemic areas are the most vulnerable to alimentary TBEV infections. Familial infections with these viruses are frequently recorded, mainly in children. Food-transmitted TBE can be monophasic or biphasic, and some of its neurological and psychiatric symptoms may persist in patients for a long time. Alimentary TBEV infections can be effectively prevented by consumption of pasteurised milk and the use of TBEV vaccines. It is recommended that milk and dairy products should be checked for the presence of TBE viruses prior to distribution. Protection of dairy animals against tick attacks and education of humans regarding the epidemiology and prophylaxis of TBE are equally important.

Journal ArticleDOI
TL;DR: Brelia infection intensity as determined by probe-based quantitative real-time PCR significantly declined with increasing morphometric age, and there was no statistically significant difference in Borrelia prevalence between the different Morphometric age groups.
Abstract: In Europe, Ixodes ricinus plays a major role as a vector of Borrelia burgdorferi sensu lato (s.l.) spirochaetes, the causative agents of Lyme borreliosis, among other pathogens. In unfed ticks, Borrelia spirochaetes experience prolonged nutrient restriction. However, only few studies exist with regard to Borrelia infections in unfed ticks of different physiological ages. Changing body dimensions of unfed ticks, due to the consumption of energy reserves, allow physiological age estimation. The present study investigated the relationship of morphometric age with Borrelia prevalence and spirochaete load in 1882 questing I. ricinus nymphs, collected at two different locations in northern Germany in 2020. In addition, Borrelia species composition was investigated by employing a reverse line blot (RLB) probe panel suitable for the detection of ten different B. burgdorferi s.l. species, as well as the relapsing-fever spirochaete B. miyamotoi. Overall, Borrelia prevalence was 25.8% (485/1882). Whilst there was no statistically significant difference in Borrelia prevalence between the different morphometric age groups, Borrelia infection intensity as determined by probe-based quantitative real-time PCR significantly declined with increasing morphometric age. Borrelia species differentiation by RLB was successful in 29.5% of positive ticks, and revealed B. afzelii as the dominating species (65.0% of the differentiated infections). Additionally, B. garinii, B. valaisiana, B. burgdorferi sensu stricto, B. spielmanii, and B. miyamotoi were detected.

Journal ArticleDOI
TL;DR: In this article , the authors identify tick species currently present in Bosnia and Herzegovina and compare the findings with previous studies, in order to update information on their spatial distribution and other parameters of occurrence.

Journal ArticleDOI
TL;DR: In this paper, the authors identify tick species currently present in Bosnia and Herzegovina and compare the findings with previous studies, in order to update information on their spatial distribution and other parameters of occurrence.

Journal ArticleDOI
TL;DR: In this article , the occurrence of tick-borne pathogens (TBPs) of human and veterinary interest was studied in questing and feeding ticks collected from wild animals in a region in North-Western Spain.

Journal ArticleDOI
TL;DR: In this article , the prevalence of Babesia pathogens in both Dermacentor reticulatus and Ixodes ricinus ticks was assessed, and DNA was extracted from 879 individual ticks and subjected to PCR and sequence analysis.

Journal ArticleDOI
TL;DR: In this article, an infection model of the European Lyme borreliosis vector Ixodes ricinus with the EPF Metarhizium robertsii was used to demonstrate that tick mortality dramatically increases when the capability of tick hemocytes to phagocytose fungal conidia is impaired.
Abstract: Entomopathogenic fungi (EPF) have been widely explored for their potential in the biological control of insect pests and as an environmentally friendly alternative to acaricides for limiting tick infestation in the field. The arthropod cuticle is the main barrier against fungal infection, however, an understanding of internal defense mechanisms after EPF intrusion into the invertebrate hemocoel is still rather limited. Using an infection model of the European Lyme borreliosis vector Ixodes ricinus with the EPF Metarhizium robertsii, we demonstrated that ticks are capable of protecting themselves to a certain extent against mild fungal infections. However, tick mortality dramatically increases when the capability of tick hemocytes to phagocytose fungal conidia is impaired. Using RNAi-mediated silencing of tick thioester-containing proteins (TEPs), followed by in vitro and/or in vivo phagocytic assays, we found that C3-like complement components and α2-macroglobulin pan-protease inhibitors secreted to the hemolymph play pivotal roles in M. robertsii phagocytosis.

Journal ArticleDOI
TL;DR: In this article , the authors analyzed and compared the microbiota of Ixodes ricinus ticks attached on humans and collected in Serbia, and found that R. helvetica infection reduces significantly the diversity of the microbiota and the connectivity of the co-occurrence network.
Abstract: Rickettsia helvetica is an emerging pathogen of the Spotted Fever Group Rickettsia (SFGR) causing spotted fever diseases in various European countries. This tick-borne pathogen replicates in tick tissues such as the midgut and salivary gland, but its potential interactions with the vector microbiota is poorly characterized. The vector microbiome plays a pivotal role in tick-pathogen interactions, and some microbiota members facilitate or impede tick-borne pathogen infection. Manipulations of the tick microbiome have led to reduction in pathogen colonization in the tick vector. However, translating these findings into disease control applications requires a thorough characterization of vector microbiota response to different pathogens. In this study, we analyzed and compared the microbiota of Ixodes ricinus ticks attached on humans and collected in Serbia. Ticks were either infected with R. helvetica, or uninfected with major tick-borne pathogens (referred hereafter as 'pathogen-free'). We used microbial co-occurrence network analysis to determine keystone taxa of each set of samples, and to study the interaction patterns of the microbial communities in response to pathogen infection. The inferred functional profiles of the tick microbiome in R. helvetica-positive and pathogen-free samples were also compared. Our results show that R. helvetica infection reduces significantly the diversity of the microbiota and the connectivity of the co-occurrence network. In addition, using co-occurrence network we identified bacterial taxa (i.e., Enterobacteriaceae, Comamonadaceae, and Bacillus) that were negatively associated with 'Rickettsia' in R. helvetica-infected ticks, suggesting competition between R. helvetica and some members of the tick microbiota. The reconstruction of microbial metabolic pathways shows that the presence of R. helvetica might have a major impact on the metabolic functions of the tick microbiome. These results can inform novel interventions for the prevention of R. helvetica, or other SFGR infections in humans.

Journal ArticleDOI
TL;DR: Central Europe and the Baltic countries are areas with a high risk of TBE infection, despite the COVID-19 pandemic and imposed restrictions, where the incidence of T BE is increasing in more than half of the analyzed countries.
Abstract: Ixodes ricinus ticks are one of the most important vectors and reservoirs of infectious diseases in Europe, and tick-borne encephalitis (TBE) is one of the most dangerous human diseases transmitted by these vectors. The aim of the present study was to investigate the TBE incidence in some European countries during the COVID-19 pandemic. To this end, we analyzed the data published by the European Center for Disease Prevention and Control (ECDC) and Eurostat on the number of reported TBE and COVID-19 cases in 2020 and TBE cases in 2015–2019 (reference period). Significant differences in the TBE incidence were found between the analyzed countries. The highest TBE incidence was found in Lithuania (25.45/100,000 inhabitants). A high TBE incidence was also observed in Central European countries. In 12 of the 23 analyzed countries, there was significant increase in TBE incidence during the COVID-19 pandemic during 2020 compared to 2015–2019. There was no correlation between the incidence of COVID-19 and TBE and between the availability of medical personnel and TBE incidence in the studied countries. In conclusion, Central Europe and the Baltic countries are areas with a high risk of TBE infection. Despite the COVID-19 pandemic and imposed restrictions, the incidence of TBE is increasing in more than half of the analyzed countries.

Journal ArticleDOI
TL;DR: In this article , the authors assess the distribution and estimate the prevalence of A. phagocytophilum in questing Ixodes ricinus at recreational locations across England and Wales over six years.

Journal ArticleDOI
TL;DR: In this article , the authors proposed an expert opinion elicitation framework that integrates expert opinions as prior distributions for the effects of continuous explanatory variables, through a Bayesian Parametric Survival Model (B-PSM).

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an expert opinion elicitation framework that integrates expert opinions as prior distributions for the effects of continuous explanatory variables, through a Bayesian Parametric Survival Model (B-PSM).

Journal ArticleDOI
01 Jan 2022
TL;DR: In this article , an infection model of the European Lyme borreliosis vector Ixodes ricinus with the EPF Metarhizium robertsii was used to demonstrate that tick mortality dramatically increases when the capability of tick hemocytes to phagocytose fungal conidia is impaired.
Abstract: Entomopathogenic fungi (EPF) have been widely explored for their potential in the biological control of insect pests and as an environmentally friendly alternative to acaricides for limiting tick infestation in the field. The arthropod cuticle is the main barrier against fungal infection, however, an understanding of internal defense mechanisms after EPF intrusion into the invertebrate hemocoel is still rather limited. Using an infection model of the European Lyme borreliosis vector Ixodes ricinus with the EPF Metarhizium robertsii, we demonstrated that ticks are capable of protecting themselves to a certain extent against mild fungal infections. However, tick mortality dramatically increases when the capability of tick hemocytes to phagocytose fungal conidia is impaired. Using RNAi-mediated silencing of tick thioester-containing proteins (TEPs), followed by in vitro and/or in vivo phagocytic assays, we found that C3-like complement components and α2-macroglobulin pan-protease inhibitors secreted to the hemolymph play pivotal roles in M. robertsii phagocytosis.

Journal ArticleDOI
TL;DR: It is suggested that lncRNAs that may act as sponges have diverse biological roles related to the tick–host interaction in different tissues.
Abstract: Ixodes ricinus ticks are distributed across Europe and are a vector of tick-borne diseases. Although I. ricinus transcriptome studies have focused exclusively on protein coding genes, the last decade witnessed a strong increase in long non-coding RNA (lncRNA) research and characterization. Here, we report for the first time an exhaustive analysis of these non-coding molecules in I. ricinus based on 131 RNA-seq datasets from three different BioProjects. Using this data, we obtained a consensus set of lncRNAs and showed that lncRNA expression is stable among different studies. While the length distribution of lncRNAs from the individual data sets is biased toward short length values, implying the existence of technical artefacts, the consensus lncRNAs show a more homogeneous distribution emphasizing the importance to incorporate data from different sources to generate a solid reference set of lncRNAs. KEGG enrichment analysis of host miRNAs putatively targeting lncRNAs upregulated upon feeding showed that these miRNAs are involved in several relevant functions for the tick-host interaction. The possibility that at least some tick lncRNAs act as host miRNA sponges was further explored by identifying lncRNAs with many target regions for a given host miRNA or sets of host miRNAs that consistently target lncRNAs together. Overall, our findings suggest that lncRNAs that may act as sponges have diverse biological roles related to the tick–host interaction in different tissues.

Journal ArticleDOI
TL;DR: In this article , the authors analyzed and compared the microbiota of Ixodes ricinus ticks attached on humans and collected in Serbia, and found that R. helvetica infection reduces significantly the diversity of the microbiota and the connectivity of the co-occurrence network.
Abstract: Rickettsia helvetica is an emerging pathogen of the Spotted Fever Group Rickettsia (SFGR) causing spotted fever diseases in various European countries. This tick-borne pathogen replicates in tick tissues such as the midgut and salivary gland, but its potential interactions with the vector microbiota is poorly characterized. The vector microbiome plays a pivotal role in tick-pathogen interactions, and some microbiota members facilitate or impede tick-borne pathogen infection. Manipulations of the tick microbiome have led to reduction in pathogen colonization in the tick vector. However, translating these findings into disease control applications requires a thorough characterization of vector microbiota response to different pathogens. In this study, we analyzed and compared the microbiota of Ixodes ricinus ticks attached on humans and collected in Serbia. Ticks were either infected with R. helvetica, or uninfected with major tick-borne pathogens (referred hereafter as 'pathogen-free'). We used microbial co-occurrence network analysis to determine keystone taxa of each set of samples, and to study the interaction patterns of the microbial communities in response to pathogen infection. The inferred functional profiles of the tick microbiome in R. helvetica-positive and pathogen-free samples were also compared. Our results show that R. helvetica infection reduces significantly the diversity of the microbiota and the connectivity of the co-occurrence network. In addition, using co-occurrence network we identified bacterial taxa (i.e., Enterobacteriaceae, Comamonadaceae, and Bacillus) that were negatively associated with 'Rickettsia' in R. helvetica-infected ticks, suggesting competition between R. helvetica and some members of the tick microbiota. The reconstruction of microbial metabolic pathways shows that the presence of R. helvetica might have a major impact on the metabolic functions of the tick microbiome. These results can inform novel interventions for the prevention of R. helvetica, or other SFGR infections in humans.

Journal ArticleDOI
22 Apr 2022-PLOS ONE
TL;DR: In this article , the authors used climate projection data of temperature, precipitation, and relative humidity for the period 1971-2099 from 15 different climate models to address the future activity and density of the castor bean tick Ixodes ricinus.
Abstract: Models can be applied to extrapolate consequences of climate change for complex ecological systems in the future. The acknowledged systems’ behaviour at present is projected into the future considering climate projection data. Such an approach can be used to addresses the future activity and density of the castor bean tick Ixodes ricinus, the most widespread tick species in Europe. It is an important vector of pathogens causing Lyme borreliosis and tick-borne encephalitis. The population dynamics depend on several biotic and abiotic factors. Such complexity makes it difficult to predict the future dynamics and density of I. ricinus and associated health risk for humans. The objective of this study is to force ecological models with high-resolution climate projection data to extrapolate I. ricinus tick density and activity patterns into the future. We used climate projection data of temperature, precipitation, and relative humidity for the period 1971–2099 from 15 different climate models. Tick activity was investigated using a climate-driven cohort-based population model. We simulated the seasonal population dynamics using climate data between 1971 and 2099 and observed weather data since 1949 at a specific location in southern Germany. We evaluated derived quantities of local tick ecology, e.g. the maximum questing activity of the nymphal stage. Furthermore, we predicted spatial density changes by extrapolating a German-wide tick density model. We compared the tick density of the reference period (1971–2000) with the counter-factual densities under the near-term scenario (2012–2041), mid-term scenario (2050–2079) and long-term scenario (2070–2099). We found that the nymphal questing peak would shift towards early seasons of the year. Also, we found high spatial heterogeneity across Germany, with predicted hotspots of up to 2,000 nymphs per 100 m2 and coldspots with constant density. As our results suggest extreme changes in tick behaviour and density, we discuss why caution is needed when extrapolating climate data-driven models into the distant future when data on future climate drive the model projection.

Journal ArticleDOI
TL;DR: In this article , the authors identify the composition of questing tick species and associated pathogens at different sites near the German Baltic coast and confirm the northern expansion of Dermacentor reticulatus and H. concinna in Germany.
Abstract: Ixodid ticks from the Northern Hemisphere have registered a northward expansion in recent years, and Dermacentor reticulatus is such an example in Europe, its expansion being considered a result of climate change alongside other factors. The aim of this study was to identify the composition of questing tick species and the associated pathogens at different sites near the German Baltic coast.Questing ticks were collected monthly at four sites (May-November, 2020), mainly grasslands, and in October and November 2020 at a fifth site. Molecular screening of ticks for pathogens included RT-qPCR for the tick-borne encephalitis virus (TBEV), qPCR for Anaplasma phagocytophilum, PCR for Babesia species and Rickettsia species, and nested PCR for Borrelia species.Altogether 1174 questing ticks were collected: 760 Ixodes ricinus, 326 D. reticulatus and 88 Haemaphysalis concinna. The highest activity peak of I. ricinus and D. reticulatus was in May, in June for H. concinna while a second peak was observed only for I. ricinus and D. reticulatus in September and October, respectively. All samples tested negative for TBEV. For A. phagocytophilum, 1.5% of I. ricinus adults tested positive while the minimum infection rate (MIR) in nymphs was 1.3%. This pathogen was found in 0.6% of D. reticulatus. Babesia spp. were detected in I. ricinus (18.2% adults, 2.1% MIR in nymphs) and H. concinna (13.3% adults, 9.7% MIR in nymphs). Borrelia spp. were present only in I. ricinus (49.1% adults, 11.9% MIR in nymphs), while Rickettsia spp. were detected in I. ricinus (14% adults, 8.9% MIR in nymphs) and D. reticulatus (82%). Co-detection of pathogens was observed in 26.6% and 54.8% of positive I. ricinus adults and nymph pools, respectively, while one D. reticulatus tested positive for A. phagocytophilum and Rickettsia spp. The most common co-infection in I. ricinus adults was Babesia microti and Borrelia afzelii (12.3% of positive ticks).The results of this study confirm the northern expansion of D. reticulatus and H. concinna in Germany. The detailed data of the infection levels at each location could be useful in assessing the risk of pathogen acquisition following a tick bite.

Journal ArticleDOI
TL;DR: The second probable case of United Kingdom-acquired TBE and demonstrate deer TBE-serocomplex seropositivity in the surrounding area, providing further evidence of the presence of TBE in England as discussed by the authors.

Journal ArticleDOI
TL;DR: In this paper , the effects of environmental factors on host-seeking (questing) activity of I. ricinus nymphs across diverse climatic types in France over 8 years were investigated.
Abstract: Ixodes ricinus ticks (Acari: Ixodidae) are the most important vector for Lyme borreliosis in Europe. As climate change might affect their distributions and activities, this study aimed to determine the effects of environmental factors, i.e., meteorological, bioclimatic, and habitat characteristics on host-seeking (questing) activity of I. ricinus nymphs, an important stage in disease transmissions, across diverse climatic types in France over 8 years. Questing activity was observed using a repeated removal sampling with a cloth-dragging technique in 11 sampling sites from 7 tick observatories from 2014 to 2021 at approximately 1-month intervals, involving 631 sampling campaigns. Three phenological patterns were observed, potentially following a climatic gradient. The mixed-effects negative binomial regression revealed that observed nymph counts were driven by different interval-average meteorological variables, including 1-month moving average temperature, previous 3-to-6-month moving average temperature, and 6-month moving average minimum relative humidity. The interaction effects indicated that the phenology in colder climates peaked differently from that of warmer climates. Also, land cover characteristics that support the highest baseline abundance were moderate forest fragmentation with transition borders with agricultural areas. Finally, our model could potentially be used to predict seasonal human-tick exposure risks in France that could contribute to mitigating Lyme borreliosis risk.

Journal ArticleDOI
TL;DR: In this article , Ixodes ricinus and Dermacentor reticulatus were collected from several sites, including recreational urban parks, located in Augustów and Białystok, Poland.
Abstract: Ticks, such as Ixodes ricinus and Dermacentor reticulatus, act as vectors for multiple pathogens posing a threat to both human and animal health. As the process of urbanization is progressing, those arachnids are being more commonly encountered in urban surroundings. In total, 1112 I. ricinus (n = 842) and D. reticulatus (n = 270) ticks were collected from several sites, including recreational urban parks, located in Augustów and Białystok, Poland. Afterwards, the specimens were examined for the presence of Borrelia spp., Babesia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., and Coxiella burnetii using the PCR method. Overall obtained infection rate reached 22.4% (249/1112). In total, 26.7% (225/842) of I. ricinus was infected, namely with Borrelia spp. (25.2%; 212/842), Babesia spp. (2.0%; 17/842), and A. phagocytophilum (1.2%; 10/842). Among D. reticulatus ticks, 8.9% (24/270) were infected, specifically with Babesia spp. (7.0%; 19/270), A. phagocytophilum (1.1%; 3/270), and Borrelia burgdorferi s.l. (0.7%; 2/270). No specimen tested positively for Rickettsia spp., Bartonella spp., or Coxiella burnetii. Co-infections were detected in 14 specimens. Results obtained in this study confirm that I. ricinus and D. reticulatus ticks found within the study sites of northeastern Poland are infected with at least three pathogens. Evaluation of the prevalence of pathogens in ticks collected from urban environments provides valuable information, especially in light of the growing number of tick-borne infections in humans and domesticated animals.