scispace - formally typeset
Search or ask a question

Showing papers by "Anna C. Need published in 2018"


Journal ArticleDOI
Jeanne E. Savage1, Philip R. Jansen1, Philip R. Jansen2, Sven Stringer1, Kyoko Watanabe1, Julien Bryois3, Christiaan de Leeuw1, Mats Nagel, Swapnil Awasthi4, Peter B. Barr5, Jonathan R. I. Coleman6, Katrina L. Grasby7, Anke R. Hammerschlag1, Jakob Kaminski4, Robert Karlsson3, Eva Krapohl8, Max Lam, Marianne Nygaard9, Chandra A. Reynolds10, Joey W. Trampush11, Hannah Young12, Delilah Zabaneh8, Sara Hägg3, Narelle K. Hansell13, Ida K. Karlsson3, Sten Linnarsson3, Grant W. Montgomery13, Grant W. Montgomery7, Ana B. Muñoz-Manchado3, Erin Burke Quinlan8, Gunter Schumann8, Nathan G. Skene3, Nathan G. Skene14, Bradley T. Webb5, Tonya White2, Dan E. Arking15, Dimitrios Avramopoulos15, Robert M. Bilder16, Panos Bitsios17, Katherine E. Burdick18, Katherine E. Burdick19, Katherine E. Burdick20, Tyrone D. Cannon21, Ornit Chiba-Falek, Andrea Christoforou22, Elizabeth T. Cirulli, Eliza Congdon16, Aiden Corvin23, Gail Davies24, Ian J. Deary24, Pamela DeRosse25, Pamela DeRosse26, Dwight Dickinson27, Srdjan Djurovic28, Srdjan Djurovic29, Gary Donohoe30, Emily Drabant Conley, Johan G. Eriksson31, Thomas Espeseth32, Nelson A. Freimer16, Stella G. Giakoumaki17, Ina Giegling33, Michael Gill23, David C. Glahn21, Ahmad R. Hariri34, Alex Hatzimanolis35, Alex Hatzimanolis36, Matthew C. Keller37, Emma Knowles21, Deborah C. Koltai34, Bettina Konte33, Jari Lahti31, Stephanie Le Hellard29, Todd Lencz25, Todd Lencz26, David C. Liewald24, Edythe D. London16, Astri J. Lundervold29, Anil K. Malhotra26, Anil K. Malhotra25, Ingrid Melle32, Ingrid Melle29, Derek W. Morris30, Anna C. Need38, William Ollier39, Aarno Palotie31, Aarno Palotie40, Aarno Palotie20, Antony Payton39, Neil Pendleton41, Russell A. Poldrack42, Katri Räikkönen31, Ivar Reinvang32, Panos Roussos19, Panos Roussos18, Dan Rujescu33, Fred W. Sabb43, Matthew A. Scult34, Olav B. Smeland32, Nikolaos Smyrnis36, Nikolaos Smyrnis35, John M. Starr24, Vidar M. Steen29, Nikos C. Stefanis36, Nikos C. Stefanis35, Richard E. Straub15, Kjetil Sundet32, Henning Tiemeier2, Aristotle N. Voineskos44, Daniel R. Weinberger15, Elisabeth Widen31, Jin Yu, Gonçalo R. Abecasis45, Ole A. Andreassen32, Gerome Breen6, Lene Christiansen9, Birgit Debrabant9, Danielle M. Dick5, Andreas Heinz4, Jens Hjerling-Leffler3, M. Arfan Ikram46, Kenneth S. Kendler5, Nicholas G. Martin7, Sarah E. Medland7, Nancy L. Pedersen3, Robert Plomin8, Tinca J. C. Polderman1, Stephan Ripke4, Stephan Ripke20, Stephan Ripke47, Sophie van der Sluis, Patrick Sullivan3, Patrick Sullivan48, Scott I. Vrieze12, Margaret J. Wright13, Danielle Posthuma1 
TL;DR: A large-scale genetic association study of intelligence identifies 190 new loci and implicates 939 new genes related to neurogenesis, neuron differentiation and synaptic structure, a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
Abstract: Intelligence is highly heritable1 and a major determinant of human health and well-being2. Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.

800 citations


Journal ArticleDOI
Gail Davies1, Max Lam, Sarah E. Harris1, Joey W. Trampush2  +254 moreInstitutions (79)
TL;DR: In this paper, the authors combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci associated with general cognitive function.
Abstract: General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10-8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.

421 citations



Journal ArticleDOI
TL;DR: The report of four individuals with an overlapping spectrum of craniofacial dysmorphisms, cardiac anomalies, skeletal malformations, immune deficiency, endocrine abnormalities and developmental impairments, reminiscent of DiGeorge syndrome, are reported, suggesting that TBX2 is a novel candidate gene for a new multisystem malformation disorder.
Abstract: The 17 genes of the T-box family are transcriptional regulators that are involved in all stages of embryonic development, including craniofacial, brain, heart, skeleton and immune system. Malformation syndromes have been linked to many of the T-box genes. For example, haploinsufficiency of TBX1 is responsible for many structural malformations in DiGeorge syndrome caused by a chromosome 22q11.2 deletion. We report four individuals with an overlapping spectrum of craniofacial dysmorphisms, cardiac anomalies, skeletal malformations, immune deficiency, endocrine abnormalities and developmental impairments, reminiscent of DiGeorge syndrome, who are heterozygotes for TBX2 variants. The p.R20Q variant is shared by three affected family members in an autosomal dominant manner; the fourth unrelated individual has a de novo p.R305H mutation. Bioinformatics analyses indicate that these variants are rare and predict them to be damaging. In vitro transcriptional assays in cultured cells show that both variants result in reduced transcriptional repressor activity of TBX2. We also show that the variants result in reduced protein levels of TBX2. Heterologous over-expression studies in Drosophila demonstrate that both p.R20Q and p.R305H function as partial loss-of-function alleles. Hence, these and other data suggest that TBX2 is a novel candidate gene for a new multisystem malformation disorder.

51 citations



Journal ArticleDOI
TL;DR: In this paper, the authors show that their results do not suffer from "inflation in the FDR [false discovery rate]", as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88).
Abstract: Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88) presented a critique of our recently published paper in Cell Reports entitled 'Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets' (Lam et al., Cell Reports, Vol. 21, 2017, 2597-2613). Specifically, Hill offered several interrelated comments suggesting potential problems with our use of a new analytic method called Multi-Trait Analysis of GWAS (MTAG) (Turley et al., Nature Genetics, Vol. 50, 2018, 229-237). In this brief article, we respond to each of these concerns. Using empirical data, we conclude that our MTAG results do not suffer from 'inflation in the FDR [false discovery rate]', as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88), and are not 'more relevant to the genetic contributions to education than they are to the genetic contributions to intelligence'.

4 citations


01 Jan 2018
TL;DR: Using empirical data, it is concluded that the MTAG results do not suffer from ‘inflation in the FDR [false discovery rate]’, as suggested by Hill, and are not ‘more relevant to the genetic contributions to education than they are to the Genetic contributions to intelligence’.
Abstract: Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88) presented a critique of our recently published paper in Cell Reports entitled 'Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets' (Lam et al., Cell Reports, Vol. 21, 2017, 2597-2613). Specifically, Hill offered several interrelated comments suggesting potential problems with our use of a new analytic method called Multi-Trait Analysis of GWAS (MTAG) (Turley et al., Nature Genetics, Vol. 50, 2018, 229-237). In this brief article, we respond to each of these concerns. Using empirical data, we conclude that our MTAG results do not suffer from 'inflation in the FDR [false discovery rate]', as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84-88), and are not 'more relevant to the genetic contributions to education than they are to the genetic contributions to intelligence'.