scispace - formally typeset
Search or ask a question

Showing papers by "Carol Churcher published in 2000"


Journal ArticleDOI
10 Feb 2000-Nature
TL;DR: The genome sequence of C. jejuni NCTC11168 is reported, finding short homopolymeric runs of nucleotides were commonly found in genes encoding the biosynthesis or modification of surface structures, or in closely linked genes of unknown function.
Abstract: Campylobacter jejuni, from the delta-epsilon group of proteobacteria, is a microaerophilic, Gram-negative, flagellate, spiral bacterium—properties it shares with the related gastric pathogen Helicobacter pylori. It is the leading cause of bacterial food-borne diarrhoeal disease throughout the world1. In addition, infection with C. jejuni is the most frequent antecedent to a form of neuromuscular paralysis known as Guillain–Barre syndrome2. Here we report the genome sequence of C. jejuni NCTC11168. C. jejuni has a circular chromosome of 1,641,481 base pairs (30.6% G+C) which is predicted to encode 1,654 proteins and 54 stable RNA species. The genome is unusual in that there are virtually no insertion sequences or phage-associated sequences and very few repeat sequences. One of the most striking findings in the genome was the presence of hypervariable sequences. These short homopolymeric runs of nucleotides were commonly found in genes encoding the biosynthesis or modification of surface structures, or in closely linked genes of unknown function. The apparently high rate of variation of these homopolymeric tracts may be important in the survival strategy of C. jejuni.

1,979 citations


Journal ArticleDOI
30 Mar 2000-Nature
TL;DR: The complete genome sequence of a serogroup A strain of Neisseria meningitidis, Z2491, is determined and the most notable feature of the genome is the presence of many hundreds of repetitive elements, ranging from short repeats, positioned either singly or in large multiple arrays, to insertion sequences and gene duplications of one kilobase or more.
Abstract: Neisseria meningitidis causes bacterial meningitis and is therefore responsible for considerable morbidity and mortality in both the developed and the developing world. Meningococci are opportunistic pathogens that colonize the nasopharynges and oropharynges of asymptomatic carriers. For reasons that are still mostly unknown, they occasionally gain access to the blood, and subsequently to the cerebrospinal fluid, to cause septicaemia and meningitis. N. meningitidis strains are divided into a number of serogroups on the basis of the immunochemistry of their capsular polysaccharides; serogroup A strains are responsible for major epidemics and pandemics of meningococcal disease, and therefore most of the morbidity and mortality associated with this disease. Here we have determined the complete genome sequence of a serogroup A strain of Neisseria meningitidis, Z2491. The sequence is 2,184,406 base pairs in length, with an overall G+C content of 51.8%, and contains 2,121 predicted coding sequences. The most notable feature of the genome is the presence of many hundreds of repetitive elements, ranging from short repeats, positioned either singly or in large multiple arrays, to insertion sequences and gene duplications of one kilobase or more. Many of these repeats appear to be involved in genome fluidity and antigenic variation in this important human pathogen.

778 citations


Journal ArticleDOI
TL;DR: The Escherichia coli K-12 genome was compared with the sampled genomes of the sibling species Salmonella enterica serovars Typhimurium, Typhi and Paratyphi A and the genome of the close outgroup Klebsiella pneumoniae and a hypothetical ancestral state of genomic regions that differ between ECO and SAL cannot be inferred from the present data.
Abstract: The Escherichia coli K-12 genome (ECO) was compared with the sampled genomes of the sibling species Salmonella enterica serovars Typhimurium, Typhi and Paratyphi A (collectively referred to as SAL) and the genome of the close outgroup Klebsiella pneumoniae (KPN). There are at least 160 locations where sequences of >400 bp are absent from ECO but present in the genomes of all three SAL and 394 locations where sequences are present in ECO but close homologs are absent in all SAL genomes. The 394 sequences in ECO that do not occur in SAL contain 1350 (30.6%) of the 4405 ECO genes. Of these, 1165 are missing from both SAL and KPN. Most of the 1165 genes are concentrated within 28 regions of 10-40 kb, which consist almost exclusively of such genes. Among these regions were six that included previously identified cryptic phage. A hypothetical ancestral state of genomic regions that differ between ECO and SAL can be inferred in some cases by reference to the genome structure in KPN and the more distant relative Yersinia pestis. However, many changes between ECO and SAL are concentrated in regions where all four genera have a different structure. The rate of gene insertion and deletion is sufficiently high in these regions that the ancestral state of the ECO/SAL lineage cannot be inferred from the present data. The sequencing of other closely related genomes, such as S.bongori or Citrobacter, may help in this regard.

114 citations


Journal ArticleDOI
01 Nov 2000-Yeast
TL;DR: One hundred and fourteen kilobase pairs (kb) of contiguous genomic sequence have been determined immediately distal to the his5 genetic marker located about 0.9 Mb from the centromere on the long arm of Schizosaccharomyces pombe chromosome 2.
Abstract: One hundred and fourteen kilobase pairs (kb) of contiguous genomic sequence have been determined immediately distal to the his5 genetic marker located about 0.9 Mb from the centromere on the long arm of Schizosaccharomyces pombe chromosome 2. The sequence is contained in overlapping cosmid clones c16H5, c12D12, c24C6 and c19G7, of which 20 kb are identical to previously reported sequence from clone c21H7. The remaining 93 781 bp of sequence contains 10 known genes (cdc14, cdm1, cps1, gpa1, msh2, pck2, rip1, rps30-2, sad1 and ubl1), 32 open reading frames (ORFs) capable of coding for proteins of at least 100 amino acid residues in length, one 5S rRNA gene, one tRNA(Pro) gene, one lone Tf1-type long terminal repeat (LTR) and one lone Tf2-type LTR. There is a density of one protein-coding gene per 2.2 kb and 22 of the 42 ORFs (52%) incorporate one or more introns. Twenty-one of the novel ORFs show sequence similarities which suggest functions of their products, including a cyclin C, a MADS box transcription factor, mad2-like protein, telomere binding protein, topoisomerase II-associated protein, ATP-dependent DEAH box RNA helicase, G10 protein, ubiquitin-activating e1-like enzyme, nucleoporin, prolyl-tRNA synthetase, peptidylprolyl isomerase, delta-1-pyrroline-5-carboxylate dehydrogenase, protein transport protein, coatomer epsilon, TCP-1 chaperonin, beta-subunit of 6-phosphofructokinase, aminodeoxychorismate lyase, a phosphate transport protein and a thioredoxin.

5 citations