scispace - formally typeset
Search or ask a question

Showing papers by "Caroline Fayt published in 2012"


01 Dec 2012
TL;DR: In this paper, the seasonal and diurnal cycles of the HONO near-surface concentration are found to be similar in shape and in relative amplitude to the corresponding cycles of HONNO total vertical column densities and are therefore likely driven mainly by the balance between NH sources and the photolytic sink, whereas dilution effects appear to play only a minor role.
Abstract: Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of nitrous acid (HONO) and its precursor NO2 (nitrogen dioxide) as well as aerosols have been performed daily in Beijing city centre (39.98° N, 116.38° E) from July 2008 to April 2009 and at the suburban site of Xianghe (39.75° N, 116.96° E) located ~60 km east of Beijing from March 2010 to December 2012. This extensive dataset allowed for the first time the investigation of the seasonal cycle of HONO as well as its diurnal variation in and in the vicinity of a megacity. Our study was focused on the HONO and NO2 near-surface concentrations (0–200 m layer) and total vertical column densities (VCDs) and also aerosol optical depths (AODs) and extinction coefficients retrieved by applying the Optimal Estimation Method to the MAX-DOAS observations. Monthly averaged HONO near-surface concentrations at local noon display a strong seasonal cycle with a maximum in late fall/winter (~0.8 and 0.7 ppb at Beijing and Xianghe, respectively) and a minimum in summer (~0.1 ppb at Beijing and 0.03 ppb at Xianghe). The seasonal cycles of HONO and NO2 appear to be highly correlated, with correlation coefficients in the 0.7–0.9 and 0.5–0.8 ranges at Beijing and Xianghe, respectively. The stronger correlation of HONO with NO2 and also with aerosols observed in Beijing suggests possibly larger role of NO2 conversion into HONO in the Beijing city center than at Xianghe. The observed diurnal cycle of HONO near-surface concentration shows a maximum in the early morning (about 1 ppb at both sites) likely resulting from night-time accumulation, followed by a decrease to values of about 0.1–0.4 ppb around local noon. The HONO / NO2 ratio shows a similar pattern with a maximum in the early morning (values up to 0.08) and a decrease to ~0.01–0.02 around local noon. The seasonal and diurnal cycles of the HONO near-surface concentration are found to be similar in shape and in relative amplitude to the corresponding cycles of the HONO total VCD and are therefore likely driven mainly by the balance between HONO sources and the photolytic sink, whereas dilution effects appear to play only a minor role. The estimation of OH radical production from HONO and O3 photolysis based on retrieved HONO near-surface concentrations and calculated photolysis rates indicate that in the 0–200 m altitude range, HONO is by far the largest source of OH radicals in winter as well as in the early morning at all seasons, while the contribution of O3 dominates in summer from mid-morning until mid-afternoon.

146 citations


Journal ArticleDOI
TL;DR: The CINDI campaign for Nitrogen Dioxide measuring instruments (CINDI) as discussed by the authors evaluated the accuracy of state-of-the-art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing).
Abstract: From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands Its main objectives were to determine the accuracy of state-of-the-art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime First detailed comparisons performed with the CINDI data show that slant column measurements of NO 2, O 4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent instruments agree within 25% of one another, and MAX-DOAS aerosol optical thickness agrees within 20-30% with AERONET data For the in-situ NO 2 instrument using a molybdenum converter, a bias was found as large as 5 ppbv during day time, when compared to the other in-situ instruments using photolytic converters © 2012 Author(s)

79 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented and evaluated the retrieval of high spatial resolution maps of NO2 vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer.
Abstract: . We present and evaluate the retrieval of high spatial resolution maps of NO2 vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO2 VCD are derived with a two-step approach usually applied to satellite NO2 retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations. Our analysis demonstrates that APEX is clearly sensitive to NO2 VCD above typical European tropospheric background abundances (>1 × 1015 molec cm−2). The two-dimensional maps of NO2 VCD reveal a very convincing spatial distribution with strong gradients around major NOx sources (e.g. Zurich airport, waste incinerator, motorways) and low NO2 in remote areas. The morning overflights resulted in generally higher NO2 VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day with stronger winds and hence larger dilution in the afternoon. The remotely sensed NO2 VCD are also in reasonably good agreement with ground-based in-situ measurements from air quality networks considering the limitations of comparing column integrals with point measurements. Airborne NO2 remote sensing using APEX will be valuable to detect NO2 emission sources, to provide input for NO2 emission modelling, and to establish links between in-situ measurements, air quality models, and satellite NO2 products.

56 citations


Journal ArticleDOI
TL;DR: In this article, the Global Ozone Monitoring Instrument (GOME) was launched in April 1995 on ESA's ERS-2 platform, and the GOME Data Processor (GDP) operational retrieval algorithm has produced total ozone columns since July 1995.
Abstract: [1] The Global Ozone Monitoring Instrument (GOME) was launched in April 1995 on ESA's ERS-2 platform, and the GOME Data Processor (GDP) operational retrieval algorithm has produced total ozone columns since July 1995. We report on the new GDP5 spectral fitting algorithm used to reprocess the 16-year GOME data record. Previous GDP total ozone algorithms were based on the DOAS method. In contrast, GDP5 uses a direct-fitting algorithm without high-pass filtering of radiances; there is no air mass factor conversion to vertical column amount. GDP5 includes direct radiative transfer simulation of earthshine radiances and Jacobians with respect to total ozone, albedo closure and other ancillary fitting parameters - a temperature profile shift, and amplitudes for undersampling and Ring-effect interference signals. Simulations are based on climatological ozone profiles extracted from the TOMS Version 8 database, classified by total column. GDP5 uses the high-resolution Brion-Daumont-Malicet ozone absorption cross-sections, replacing older GOME-measured flight model data. The semi-empirical molecular Ring correction developed for GDP4 has been adapted for direct fitting. Cloud preprocessing for GDP5 is done using updated versions of cloud-correction algorithms OCRA and ROCINN. The reprocessed GOME GDP5 record maintains the remarkable long-term stability of time series already achieved with GDP4. Furthermore, validation results show a clear improvement in the accuracy of the ozone product with reduced solar zenith angle and seasonal dependences, particularly in comparison with correlative observations from the ground-based network of Brewer spectrophotometers.

49 citations


DOI
01 Jan 2012
TL;DR: In this paper, the authors presented and evaluated the retrieval of high spatial resolution maps of NO₂ vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer.
Abstract: We present and evaluate the retrieval of high spatial resolution maps of NO₂ vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO₂ VCD are derived with a two-step approach usually applied to satellite NO₂ retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations. Our analysis demonstrates that APEX is clearly sensitive to NO₂ VCD above typical European tropospheric background abundances (> 1 × 10¹⁵ molec cm⁻²). The two-dimensional maps of NO₂ VCD reveal a very convincing spatial distribution with strong gradients around major NOx sources (e.g. Zurich airport, waste incinerator, motorways) and low NO₂ in remote areas. The morning overflights resulted in generally higher NO₂ VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day with stronger winds and hence larger dilution in the afternoon. The remotely sensed NO₂ VCD are also in reasonably good agreement with ground-based in-situ measurements from air quality networks considering the limitations of comparing column integrals with point measurements. Airborne NO₂ remote sensing using APEX will be valuable to detect NO₂ emission sources, to provide input for NO₂ emission modelling, and to establish links between in-situ measurements, air quality models, and satellite NO₂ products.

38 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compare ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) located at Eureka, Canada.
Abstract: . The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80° N, 86° W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80° N. Satellite 14–52 km ozone and 17–40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 ± 0.2% and −0.2 ± 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14–52 km satellite and 0–14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1–7.3%. For NO2, partial columns from 17 km upward were scaled to noon using a photochemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20%. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25–52%. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007–2009 spring-time mean relative difference improved from −5.0 ± 0.4% to −3.1 ± 0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a ±1° latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well.

30 citations


Journal ArticleDOI
TL;DR: In this article, the authors report on airborne Differential Optical Absorption Spectroscopy (DOAS) measurements of NO2 tropospheric columns above South Asia, the Arabic peninsula, North Africa, and Italy in November and December 2009.
Abstract: . We report on airborne Differential Optical Absorption Spectroscopy (DOAS) measurements of NO2 tropospheric columns above South Asia, the Arabic peninsula, North Africa, and Italy in November and December 2009. The DOAS instrument was installed on an ultralight aircraft involved in the Earth Challenge project, an expedition of seven pilots flying on four ultralight aircraft between Australia and Belgium. The instrument recorded spectra in limb geometry with a large field of view, a set-up which provides a high sensitivity to the boundary layer NO2 while minimizing the uncertainties related to the attitude variations. We compare our measurements with OMI (Ozone Monitoring Instrument) and GOME-2 (Global Ozone Monitoring Experiment 2) tropospheric NO2 products when the latter are available. Above Rajasthan and the Po Valley, two areas where the NO2 field is homogeneous, data sets agree very well. Our measurements in these areas are 0.1 ± 0.1 to 3 ± 1 × 1015 molec cm−2 and 2.6 ± 0.8 × 1016 molec cm−2, respectively. Flying downwind of Riyadh, our NO2 measurements show the structure of the megacity's exhaust plume with a higher spatial resolution than OMI. Moreover, our measurements are larger (up to 40%) than those seen by satellites. We also derived tropospheric columns when no satellite data were available if it was possible to get information on the visibility from satellite measurements of aerosol optical thickness. This experiment also provides a confirmation for the recent finding of a soil signature above desert.

29 citations


Journal ArticleDOI
TL;DR: In this paper, the trend in stratospheric NO2 column at the NDACC (Network for the Detection of Atmospheric Com- position change) station of Jungfraujoch (46.5 N, 8.0 E) is assessed using ground-based FTIR and zenith-scattered visible sunlight SAOZ measurements over the period 1990 to 2009 as well as a composite satellite nadir data set con- structed from ERS-2/GOME, ENVISAT/SCIAMACHY, and METOP-A/G
Abstract: The trend in stratospheric NO2 column at the NDACC (Network for the Detection of Atmospheric Com- position Change) station of Jungfraujoch (46.5 N, 8.0 E) is assessed using ground-based FTIR and zenith-scattered visible sunlight SAOZ measurements over the period 1990 to 2009 as well as a composite satellite nadir data set con- structed from ERS-2/GOME, ENVISAT/SCIAMACHY, and METOP-A/GOME-2 observations over the 1996-2009 pe- riod. To calculate the trends, a linear least squares regres- sion model including explanatory variables for a linear trend, the mean annual cycle, the quasi-biennial oscillation (QBO), solar activity, and stratospheric aerosol loading is used. For the 1990-2009 period, statistically indistinguishable trends of 3.7± 1.1 % decade 1 and 3.6± 0.9 % decade 1 are

27 citations