scispace - formally typeset
Search or ask a question

Showing papers by "Cornelius Faber published in 2018"


Journal ArticleDOI
TL;DR: This work reviews the integration of optical recordings and optogenetic manipulation into fMRI experiments, and describes how BOLD fMRI in a 9.4-T small animal MR scanner can be combined with in vivo fiber-optic calcium recordings andoptogenetic control in a multimodal setup.
Abstract: Recent developments of optogenetic tools and fluorescence-based calcium recording techniques enable the manipulation and monitoring of neural circuits on a cellular level. Non-invasive imaging of brain networks, however, requires the application of methods such as blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), which is commonly used for functional neuroimaging. While BOLD fMRI provides brain-wide non-invasive reading of the hemodynamic response, it is only an indirect measure of neural activity. Direct observation of neural responses requires electrophysiological or optical methods. The latter can be combined with optogenetic control of neuronal circuits and are MRI compatible. Yet, simultaneous optical recordings are still limited to fiber-optic-based approaches. Here, we review the integration of optical recordings and optogenetic manipulation into fMRI experiments. As a practical example, we describe how BOLD fMRI in a 9.4-T small animal MR scanner can be combined with in vivo fiber-optic calcium recordings and optogenetic control in a multimodal setup. We present simultaneous BOLD fMRI and calcium recordings under optogenetic control in rat. We outline details about MR coil configuration, choice, and usage of opsins and chemically and genetically encoded calcium sensors, fiber implantation, appropriate light power for stimulation, and calcium signal detection, to provide a glimpse into challenges and opportunities of this multimodal molecular neuroimaging approach.

47 citations


Journal ArticleDOI
TL;DR: The results confirm that optogenetic activation is a valid model for physiological neuronal input, and that differences in temporal behavior of only a few hundred milliseconds can be resolved in rodent fMRI.

40 citations


Journal ArticleDOI
TL;DR: Improved understanding of relevant bacterial virulence factors and triggered host immune responses is required to help developing novel antipathogenic treatment strategies and pathogen specific diagnostic markers infective endocarditis.

25 citations


Journal ArticleDOI
TL;DR: Time-lapse MRI was implemented for dynamic non-invasive cell tracking of individual slowly moving intravascular immune cells and may serve as a tool for detection or monitoring of an inflammatory response.
Abstract: Time-lapse MRI was implemented for dynamic non-invasive cell tracking of individual slowly moving intravascular immune cells. Repetitive MRI acquisition enabled dynamic observation of iron oxide nanoparticle (ION) labelled cells. Simulations of MRI contrast indicated that only cells moving slower than 1 µm/s were detectable. Time-lapse MRI of the brain was performed after either IONs or ION-labelled monocytes were injected intravenously into naive and experimental autoimmune encephalomyelitis (EAE) bearing mice at a presymptomatic or symptomatic stage. EAE mice showed a reduced number of slow moving, i.e. patrolling cells before and after onset of symptoms as compared to naive controls. This observation is consistent with the notion of altered cell dynamics, i.e. higher velocities of immune cells rolling along the endothelium in the inflamed condition. Thus, time-lapse MRI enables for assessing immune cell dynamics non-invasively in deep tissue and may serve as a tool for detection or monitoring of an inflammatory response.

12 citations



Journal ArticleDOI
TL;DR: The first video of a living hatchling is provided and magnetic resonance imaging (MRI) is used to analyze its anatomy and assign the specimen to the genus Grimpoteuthis, the so-called dumbo octopods, providing evidence that dumboOctopods hatch as competent juveniles.

9 citations


Journal ArticleDOI
TL;DR: Neurological recovery after stroke mainly depends on the location of the lesion, but patterns of neural plasticity following brainstem ischemia are almost unknown.
Abstract: Objective Neurological recovery after stroke mainly depends on the location of the lesion. A substantial portion of strokes affects the brainstem. However, patterns of neural plasticity following brainstem ischemia are almost unknown. Methods Here, we established a rat brainstem ischemia model that resembles key features of the human disease and investigated mechanisms of neural plasticity, including neurogenesis and axonal sprouting as well as secondary neurodegeneration. Results Spontaneous functional recovery was accompanied by a distinct pattern of axonal sprouting, for example, an increased bilateral fiber outgrowth from the corticorubral tract to the respective contralesional red nucleus suggesting a compensatory role of extrapyramidal pathways after damage to pyramid tracts within the brainstem. Using different markers for DNA replication, we showed that the brainstem displays a remarkable ability to undergo specific plastic cellular changes after injury, highlighting a yet unknown pattern of neurogenesis. Neural progenitor cells proliferated within the dorsal brainstem and migrated toward the lesion, whereas neurogenesis in classic neurogenic niches, the subventricular zone of the lateral ventricle and the hippocampus, remained, in contrast to what is known from hemispheric stroke, unaffected. These beneficial changes were paralleled by long-term degenerative processes, that is, corticospinal fiber loss superior to the lesion, degeneration of spinal tracts, and a decreased neuron density within the ipsilesional substantia nigra and the contralesional red nucleus that might have limited further functional recovery. Interpretation Our findings provide knowledge of elementary plastic adaptions after brainstem stroke, which is fundamental for understanding the human disease and for the development of new treatments. Ann Neurol 2018;83:1003-1015.

7 citations


Journal ArticleDOI
TL;DR: The results reveal in vivo, that hepatocyte-specific Alk3 deficiency partly protects from AI, the development of hypoferremia is partly dependent on ALK3, and the AlK3/BMP/hepcidin axis may serve as a possible therapeutic target to attenuate AI.
Abstract: Inflammatory stimuli induce the hepatic iron regulatory hormone hepcidin, which contributes to anaemia of inflammation (AI). Hepcidin expression is regulated by the bone morphogenetic protein (BMP) and the interleukin-6 (IL-6) signalling pathways. Prior results indicate that the BMP type I receptor ALK3 is mainly involved in the acute inflammatory hepcidin induction four and 72 h after IL-6 administration. In this study, the role of ALK3 in a chronic model of inflammation was investigated. The intact, heat-killed bacterium Brucella abortus (BA) was used to analyse its effect on the development of inflammation and hypoferremia in mice with hepatocyte-specific Alk3-deficiency (Alk3fl/fl; Alb-Cre) compared to control (Alk3fl/fl) mice. An iron restricted diet prevented development of the iron overload phenotype in mice with hepatocyte-specific Alk3 deficiency. Regular diet leads to iron overload and increased haemoglobin levels in these mice, which protects from the development of AI per se. Fourteen days after BA injection Alk3fl/fl; Alb-Cre mice presented milder anaemia (Hb 16.7 g/dl to 11.6 g/dl) compared to Alk3fl/fl control mice (Hb 14.9 g/dl to 8.6 g/dl). BA injection led to an intact inflammatory response in all groups of mice. In Alk3fl/fl; Alb-Cre mice, SMAD1/5/8 phosphorylation was reduced after BA as well as after infection with Staphylococcus aureus. The reduction of the SMAD1/5/8 signalling pathway due to hepatocyte-specific Alk3 deficiency partly suppressed the induction of STAT3 signalling. The results reveal in vivo, that 1) hepatocyte-specific Alk3 deficiency partly protects from AI, 2) the development of hypoferremia is partly dependent on ALK3, and 3) the ALK3/BMP/hepcidin axis may serve as a possible therapeutic target to attenuate AI.

5 citations


Journal ArticleDOI
TL;DR: It is demonstrated that 18F-FLT PET can noninvasively monitor cancer treatment–induced molecular alterations, including thymidine metabolism and DNA damage response, as assessed by volumetric measurements.
Abstract: Noninvasive monitoring of tumor therapy response helps in developing personalized treatment strategies. Here, we performed sequential PET and diffusion-weighted MRI to evaluate changes induced by a FOLFOX-like combination chemotherapy in colorectal cancer xenografts, to identify the cellular and molecular determinants of these imaging biomarkers. Methods: Tumor-bearing CD1 nude mice, engrafted with FOLFOX-sensitive Colo205 colorectal cancer xenografts, were treated with FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin) weekly. On days 1, 2, 6, 9, and 13 of therapy, tumors were assessed by in vivo imaging and ex vivo analyses. In addition, HCT116 xenografts, which did not respond to the FOLFOX treatment, were imaged on day 1 of therapy. Results: In Colo205 xenografts, FOLFOX induced a profound increase in uptake of the proliferation PET tracer 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) accompanied by increases in markers for proliferation (Ki-67, thymidine kinase 1) and for activated DNA damage response (γH2AX), whereas the effect on cell death was minimal. Because tracer uptake was unaltered in the HCT116 model, these changes appear to be specific for tumor response. Conclusion: We demonstrated that 18F-FLT PET can noninvasively monitor cancer treatment-induced molecular alterations, including thymidine metabolism and DNA damage response. The cellular or imaging changes may not, however, be directly related to therapy response as assessed by volumetric measurements.

4 citations