scispace - formally typeset
Search or ask a question

Showing papers in "Annals of Neurology in 2018"


Journal ArticleDOI
TL;DR: To evaluate the incidence and prevalence of autoimmune encephalitis and compare it to that of infectiousEncephalitis, a large number of patients with known or suspected cases of the disease are referred to a single hospital for evaluation.
Abstract: Objectives We evaluate incidence and prevalence of autoimmune encephalitis and compare the epidemiology of autoimmune and infectious encephalitis.

414 citations


Journal ArticleDOI
TL;DR: The contribution of 9 neuropathologies to cognitive loss at an individual level is quantified and it is shown that Parkinson's disease is the most common cause of dementia at the population level.
Abstract: OBJECTIVE Mixed neuropathologies are the most common cause of dementia at the population level, but how different neuropathologies contribute to cognitive decline at the individual level remains unknown. We quantified the contribution of 9 neuropathologies to cognitive loss at an individual level. METHODS Participants (n = 1,079) came from 2 longitudinal clinical-pathologic studies of aging. All completed 2 + cognitive evaluations (maximum = 22), died, and underwent neuropathologic examinations to identify Alzheimer disease (AD), other neurodegenerative diseases, and vascular pathologies. Linear mixed models examined associations of neuropathologies with cognitive decline and estimated the proportion of cognitive loss accounted for by each neuropathology at a person-specific level. RESULTS Neuropathology was ubiquitous, with 94% of participants having 1+, 78% having 2+, 58% having 3+, and 35% having 4+. AD was most frequent (65%) but rarely occurred in isolation (9%). Remarkably, >230 different neuropathologic combinations were observed, each of which occurred in <6% of the cohort. The relative contributions of specific neuropathologies to cognitive loss varied widely across individuals. Although AD accounted for an average of about 50% of the observed cognitive loss, the proportion accounted for at the individual level ranged widely from 22% to 100%. Lewy bodies and hippocampal sclerosis also had potent effects, but again their impacts varied at the person-specific level. INTERPRETATION There is much greater heterogeneity in the comorbidity and cognitive impact of age-related neuropathologies than currently appreciated, suggesting an urgent need for novel therapeutic approaches that embrace the complexity of disease to combat cognitive decline in old age. Ann Neurol 2018;83:74-83.

290 citations


Journal ArticleDOI
TL;DR: This work investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS.
Abstract: OBJECTIVE: Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. METHODS: We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression. RESULTS: SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (-1.45%), PPMS (-1.66%), and RRMS (-1.34%) than CIS (-0.88%) and HCs (-0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (-1.21%) was significantly faster than RRMS (-0.76%), CIS (-0.75%), and HCs (-0.51%). Similarly, the rate of parietal GM atrophy in SPMS (-1.24-%) was faster than CIS (-0.63%) and HCs (-0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). INTERPRETATION: This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of therapeutic interventions. Ann Neurol 2018;83:210-222.

271 citations


Journal ArticleDOI
TL;DR: The gut microbiota, or dysbiosis, may be responsible for age-related inflammation and chronic systemic inflammation contributes to the pathogenesis of many age‐related diseases.
Abstract: OBJECTIVE Chronic systemic inflammation contributes to the pathogenesis of many age-related diseases. Although not well understood, alterations in the gut microbiota, or dysbiosis, may be responsible for age-related inflammation. METHODS Using stroke as a disease model, we tested the hypothesis that a youthful microbiota, when established in aged mice, produces positive outcomes following ischemic stroke. Conversely, an aged microbiota, when established in young mice, produces negative outcomes after stroke. Young and aged male mice had either a young or an aged microbiota established by fecal transplant gavage (FTG). Mice were subjected to ischemic stroke (middle cerebral artery occlusion; MCAO) or sham surgery. During the subsequent weeks, mice underwent behavioral testing and fecal samples were collected for 16S ribosomal RNA analysis of bacterial content. RESULTS We found that the microbiota is altered after experimental stroke in young mice and resembles the biome of uninjured aged mice. In aged mice, the ratio of Firmicutes to Bacteroidetes (F:B), two main bacterial phyla in gut microbiota, increased ∼9-fold (p < 0.001) compared to young. This increased F:B ratio in aged mice is indicative of dysbiosis. Altering the microbiota in young by fecal gavage to resemble that of aged mice (∼6-fold increase in F:B ratio, p < 0.001) increased mortality following MCAO, decreased performance in behavioral testing, and increased cytokine levels. Conversely, altering the microbiota in aged to resemble that of young (∼9-fold decrease in F:B ratio, p < 0.001) increased survival and improved recovery following MCAO. INTERPRETATION Aged biome increased the levels of systemic proinflammatory cytokines. We conclude that the gut microbiota can be modified to positively impact outcomes from age-related diseases. Ann Neurol 2018;83:23-36.

242 citations


Journal ArticleDOI
TL;DR: Astrocytes fulfill neuronal trophic roles normally, but are transformed in Alzheimer disease (AD) into A1‐type reactive astrocytes that may destroy neurons through unknown mechanisms.
Abstract: OBJECTIVE Astrocytes fulfill neuronal trophic roles normally, but are transformed in Alzheimer disease (AD) into A1-type reactive astrocytes that may destroy neurons through unknown mechanisms. METHODS To investigate astrocyte inflammatory mechanisms, astrocyte-derived exosomes (ADEs) were isolated immunochemically from plasma samples of AD patients and matched controls for enzyme-linked immunosorbent assay quantification of complement proteins. RESULTS ADE levels of C1q, C4b, C3d, factor B, factor D, Bb, C3b, and C5b-C9 terminal complement complex, but not mannose-binding lectin, normalized by the CD81 exosome marker were significantly higher for AD patients (n = 28) than age- and gender-matched controls (all p < 0.0001). ADE normalized levels of interleukin (IL)-6, tumor necrosis factor-α, and IL-1β were significantly higher for AD patients than controls, but there was greater overlap between the two groups than for complement proteins. Mean ADE levels of complement proteins for AD patients in a longitudinal study were significantly higher (n = 16, p < 0.0001) at the AD2 stage of moderate dementia than at the AD1 preclinical stage 5 to 12 years earlier, which were the same as for controls. ADE levels of complement regulatory proteins CD59, CD46, decay-accelerating factor (DAF), and complement receptor type 1, but not factor I, were significantly lower for AD patients than controls (p < 0.0001 for CD59 and DAF), were diminished by the AD1 stage, and were further decreased at the AD2 stage. INTERPRETATION ADE complement effector proteins in AD are produced by dysregulated systems, attain higher levels than in controls, and may potentially damage neurons in the late inflammatory phase of AD. Ann Neurol 2018;83:544-552.

210 citations


Journal ArticleDOI
TL;DR: The association of plasma amyloid beta (Abeta)40, Abeta42, and total tau (tTau) with the presence of Alzheimer pathological changes in cognitively normal individuals with subjective cognitive decline (SCD) is investigated.
Abstract: Objective We investigated the association of plasma amyloid beta (Abeta)40, Abeta42, and total tau (tTau) with the presence of Alzheimer pathological changes in cognitively normal individuals with subjective cognitive decline (SCD).

200 citations


Journal ArticleDOI
TL;DR: The authors found that sleep deprivation increased soluble amyloid β, suggesting a mechanism for sleep disturbances to increase Alzheimer disease risk, suggesting that sleep disturbances are associated with future risk of Alzheimer disease.
Abstract: Sleep disturbances are associated with future risk of Alzheimer disease. Disrupted sleep increases soluble amyloid β, suggesting a mechanism for sleep disturbances to increase Alzheimer disease risk. We tested this response in humans using indwelling lumbar catheters to serially sample cerebrospinal fluid while participants were sleep-deprived, treated with sodium oxybate, or allowed to sleep normally. All participants were infused with 13 C6 -leucine to measure amyloid β kinetics. We found that sleep deprivation increased overnight amyloid β38, amyloid β40, and amyloid β42 levels by 25 to 30% via increased overnight amyloid β production relative to sleeping controls. These findings suggest that disrupted sleep increases Alzheimer disease risk via increased amyloid β production. Ann Neurol 2018;83:197-204.

188 citations


Journal ArticleDOI
TL;DR: Gray matter damage and meningeal inflammation have been associated with early disease onset and a more aggressive disease course in multiple sclerosis, but can these changes be identified in the patient early in the disease course?
Abstract: Objective Gray matter (GM) damage and meningeal inflammation have been associated with early disease onset and a more aggressive disease course in multiple sclerosis (MS), but can these changes be identified in the patient early in the disease course? Methods To identify possible biomarkers linking meningeal inflammation, GM damage, and disease severity, gene and protein expression were analyzed in meninges and cerebrospinal fluid (CSF) from 27 postmortem secondary progressive MS and 14 control cases. Combined cytokine/chemokine CSF profiling and 3T magnetic resonance imaging (MRI) were performed at diagnosis in 2 independent cohorts of MS patients (35 and 38 subjects) and in 26 non-MS patients. Results Increased expression of proinflammatory cytokines (IFNγ, TNF, IL2, and IL22) and molecules related to sustained B-cell activity and lymphoid-neogenesis (CXCL13, CXCL10, LTα, IL6, and IL10) was detected in the meninges and CSF of postmortem MS cases with high levels of meningeal inflammation and GM demyelination. Similar proinflammatory patterns, including increased levels of CXCL13, TNF, IFNγ, CXCL12, IL6, IL8, and IL10, together with high levels of BAFF, APRIL, LIGHT, TWEAK, sTNFR1, sCD163, MMP2, and pentraxin III, were detected in the CSF of MS patients with higher levels of GM damage at diagnosis. Interpretation A common pattern of intrathecal (meninges and CSF) inflammatory profile strongly correlates with increased cortical pathology, both at the time of diagnosis and at death. These results suggest a role for detailed CSF analysis combined with MRI as a prognostic marker for more aggressive MS. Ann Neurol 2018 Ann Neurol 2018;83:739-755.

186 citations


Journal ArticleDOI
TL;DR: Current and in‐development treatments for peak‐dose dyskinesia are reviewed but it is suggested that improvements in levodopa delivery alone may reduce its future prevalence.
Abstract: Levodopa-induced dyskinesia is a common complication in Parkinson disease. Pathogenic mechanisms include phasic stimulation of dopamine receptors, nonphysiological levodopa-to-dopamine conversion in serotonergic neurons, hyperactivity of corticostriatal glutamatergic transmission, and overstimulation of nicotinic acetylcholine receptors on dopamine-releasing axons. Delay in initiating levodopa is no longer recommended, as dyskinesia development is a function of disease duration rather than cumulative levodopa exposure. We review current and in-development treatments for peak-dose dyskinesia but suggest that improvements in levodopa delivery alone may reduce its future prevalence. Ann Neurol 2018;84:797-811.

186 citations


Journal ArticleDOI
TL;DR: The efficacy and mechanism of action of NAC is examined in rodent models of hemorrhagic stroke and it is shown that NAC acts as a “redox modulatory” agent in these models.
Abstract: Author(s): Karuppagounder, Saravanan S; Alin, Lauren; Chen, Yingxin; Brand, David; Bourassa, Megan W; Dietrich, Kristen; Wilkinson, Cassandra M; Nadeau, Colby A; Kumar, Amit; Perry, Steve; Pinto, John T; Darley-Usmar, Victor; Sanchez, Stephanie; Milne, Ginger L; Pratico, Domenico; Holman, Theodore R; Carmichael, S Thomas; Coppola, Giovanni; Colbourne, Frederick; Ratan, Rajiv R | Abstract: ObjectivesN-acetylcysteine (NAC) is a clinically approved thiol-containing redox modulatory compound currently in trials for many neurological and psychiatric disorders. Although generically labeled as an "antioxidant," poor understanding of its site(s) of action is a barrier to its use in neurological practice. Here, we examined the efficacy and mechanism of action of NAC in rodent models of hemorrhagic stroke.MethodsHemin was used to model ferroptosis and hemorrhagic stroke in cultured neurons. Striatal infusion of collagenase was used to model intracerebral hemorrhage (ICH) in mice and rats. Chemical biology, targeted lipidomics, arachidonate 5-lipoxygenase (ALOX5) knockout mice, and viral-gene transfer were used to gain insight into the pharmacological targets and mechanism of action of NAC.ResultsNAC prevented hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent ALOX5 activity. NAC efficacy required increases in glutathione and is correlated with suppression of reactive lipids by glutathione-dependent enzymes such as glutathione S-transferase. Accordingly, its protective effects were mimicked by chemical or molecular lipid peroxidation inhibitors. NAC delivered postinjury reduced neuronal death and improved functional recovery at least 7 days following ICH in mice and can synergize with clinically approved prostaglandin E2 (PGE2 ).InterpretationNAC is a promising, protective therapy for ICH, which acted to inhibit toxic arachidonic acid products of nuclear ALOX5 that synergized with exogenously delivered protective PGE2 in vitro and in vivo. The findings provide novel insight into a target for NAC, beyond the generic characterization as an antioxidant, resulting in neuroprotection and offer a feasible combinatorial strategy to optimize efficacy and safety in dosing of NAC for treatment of neurological disorders involving ferroptosis such as ICH. Ann Neurol 2018;84:854-872.

171 citations


Journal ArticleDOI
TL;DR: The nuanced roles of B cells in MS autoimmunity, the clinical data supporting use of ocrelizumab and other anti‐CD20 therapies in the treatment of MS, as well as safety and practical considerations for prescribing are reviewed.
Abstract: Monoclonal antibodies that target CD20 expressing B cells represent an important new treatment option for patients with multiple sclerosis (MS). B-cell-depleting therapy is highly effective against relapsing forms of the disease and is also the first treatment approach proven to protect against disability worsening in primary progressive MS. Moreover, evolving clinical experience with B-cell therapy, combined with a more sophisticated understanding of humoral immunity in preclinical models and in patients with MS, has led to major progress in deciphering the immune pathogenesis of MS. Here, we review the nuanced roles of B cells in MS autoimmunity, the clinical data supporting use of ocrelizumab and other anti-CD20 therapies in the treatment of MS, as well as safety and practical considerations for prescribing. Last, we summarize remaining unanswered questions regarding the proper role of anti-CD20 therapy in MS, its limitations, and the future landscape of B-cell-based approaches to treatment. Ann Neurol 2018;83:13-26.

Journal ArticleDOI
TL;DR: The aim of this work is to dispel myths that may inhibit physicians from referring and patients from considering neurosurgical intervention for drug‐refractory focal epilepsies.
Abstract: Neurosurgery is an underutilized treatment that can potentially cure drug-refractory epilepsy. Careful, multidisciplinary presurgical evaluation is vital for selecting patients and to ensure optimal outcomes. Advances in neuroimaging have improved diagnosis and guided surgical intervention. Invasive electroencephalography allows the evaluation of complex patients who would otherwise not be candidates for neurosurgery. We review the current state of the assessment and selection of patients and consider established and novel surgical procedures and associated outcome data. We aim to dispel myths that may inhibit physicians from referring and patients from considering neurosurgical intervention for drug-refractory focal epilepsies. Ann Neurol 2018;83:676-690.

Journal ArticleDOI
TL;DR: The longitudinal evolution of thalamic atrophy in MS and normal aging is described and sample sizes are estimated to estimate sample sizes for study design.
Abstract: Objective Thalamic volume is a candidate magnetic resonance imaging (MRI)-based marker associated with neurodegeneration to hasten development of neuroprotective treatments. Our objective is to describe the longitudinal evolution of thalamic atrophy in MS and normal aging, and to estimate sample sizes for study design. Methods Six hundred one subjects (2,632 MRI scans) were analyzed. Five hundred twenty subjects with relapse-onset MS (clinically isolated syndrome, n = 90; relapsing-remitting MS, n = 392; secondary progressive MS, n = 38) underwent annual standardized 3T MRI scans for an average of 4.1 years, including a 1mm3 3-dimensional T1-weighted sequence (3DT1; 2,485 MRI scans). Eighty-one healthy controls (HC) were scanned longitudinally on the same scanner using the same protocol (147 MRI scans). 3DT1s were processed using FreeSurfer's longitudinal pipeline after lesion inpainting. Rates of normalized thalamic volume loss in MS and HC were compared in linear mixed effects models. Simulation-based sample size calculations were performed incorporating the rate of atrophy in HC. Results Thalamic volume declined significantly faster in MS subjects compared to HC, with an estimated decline of -0.71% per year (95% confidence interval [CI] = -0.77% to -0.64%) in MS subjects and -0.28% per year (95% CI = -0.58% to 0.02%) in HC (p for difference = 0.007). The rate of decline was consistent throughout the MS disease duration and across MS clinical subtypes. Eighty or 100 subjects per arm (α = 0.1 or 0.05, respectively) would be needed to detect the maximal effect size with 80% power in a 24-month study. Interpretation Thalamic atrophy occurs early and consistently throughout MS. Preliminary sample size calculations appear feasible, adding to its appeal as an MRI marker associated with neurodegeneration. Ann Neurol 2018;83:223-234.

Journal ArticleDOI
TL;DR: Amyloid‐beta and tau pathologies are commonly observed among clinically normal older individuals at postmortem and can now be detected with in vivo neuroimaging and the association and interaction of these proteinopathies with prospective cognitive decline in normal aging and preclinical Alzheimer's disease remains to be fully elucidated.
Abstract: Objectives Amyloid-beta (Aβ) and tau pathologies are commonly observed among clinically normal older individuals at postmortem and can now be detected with in vivo neuroimaging. The association and interaction of these proteinopathies with prospective cognitive decline in normal aging and preclinical Alzheimer's disease (AD) remains to be fully elucidated. Methods One hundred thirty-seven older individuals (age = 76.3 ± 6.22 years) participating in the Harvard Aging Brain Study underwent Aβ (11 C-Pittsburgh compound B) and tau (18 F-flortaucipir) positron emission tomography (PET) with prospective neuropsychological assessments following PET imaging (mean number of cognitive visits = 2.8 ± 1.1). Tau and Aβ PET measures were assessed in regions of interest (ROIs) as well as vertex-wise map analyses. Cognitive change was evaluated with Memory and Executive Function composites. Results Higher levels of Aβ and tau were both associated with greater memory decline, but not with change in executive function. Higher cortical Aβ was associated with higher tau levels in all ROIs, independent of age, and very elevated levels of tau were observed primarily in clinically normal with elevated Aβ. A significant interaction between tau and Aβ was observed in both ROI and map-level analyses, such that rapid prospective memory decline was observed in participants who had high levels of both pathologies. Interpretation Our results are consistent with the supposition that both Aβ and tau are necessary for memory decline in the preclinical stages of AD. These findings may be relevant for disambiguating aging and early cognitive manifestations of AD, and to inform secondary prevention trials in preclinical AD. Ann Neurol 2019;00:1-3 ANN NEUROL 2019;85:181-193.

Journal ArticleDOI
TL;DR: To evaluate neurofilament light (NfL) as a biomarker of the presymptomatic phase of amyotrophic lateral sclerosis (ALS), a large number of animal studies have shown clear associations between NfL and disease progression.
Abstract: Objective: To evaluate neurofilament light (NfL) as a biomarker of the presymptomatic phase of amyotrophic lateral sclerosis (ALS).Methods: The study population includes 84 individuals at risk for ...

Journal ArticleDOI
TL;DR: Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing‐remitting multiple sclerosis patients is studied.
Abstract: Objective Effect of a probiotic on the gut microbiome and peripheral immune function in healthy controls and relapsing-remitting multiple sclerosis (MS) patients. Methods MS patients (N = 9) and controls (N = 13) were orally administered a probiotic containing Lactobacillus, Bifidobacterium, and Streptococcus twice-daily for two months. Blood and stool specimens were collected at baseline, after completion of the 2-month treatment, and 3 months after discontinuation of therapy. Frozen peripheral blood mononuclear cells (PBMCs) were used for immune cell profiling. Stool samples were used for 16S rRNA profiling and metabolomics. Results Probiotic administration increased the abundance of several taxa known to be depleted in MS such as Lactobacillus. We found that probiotic use decreased the abundance of taxa previously associated with dysbiosis in MS, including Akkermansia and Blautia. Predictive metagenomic analysis revealed a decrease in the abundance of several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with altered gut microbiota function in MS patients, such as methane metabolism, following probiotic supplementation. At the immune level, probiotic administration induced an anti-inflammatory peripheral immune response characterized by decreased frequency of inflammatory monocytes, decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes, as well as decreased human leukocyte antigen (HLA) D related MFI on dendritic cells. Probiotic administration was also associated with decreased expression of MS risk allele HLA-DQA1 in controls. Probiotic-induced increase in abundance of Lactobacillus and Bifidobacterium was associated with decreased expression of MS risk allele HLA.DPB1 in controls. Interpretation Our results suggest that probiotics could have a synergistic effect with current MS therapies. Ann Neurol 2018.

Journal ArticleDOI
TL;DR: This review summarizes the current evidence on ischemic stroke risk, biomarkers, pathophysiology, treatments, and prognosis in cancer patients, emphasizing knowledge gaps and the potential strategies to address them.
Abstract: Currently 1 in 10 patients with ischemic stroke have comorbid cancer, and this frequency is expected to increase with continued advances in cancer therapeutics prolonging median survival. Well known for its association with venous thrombosis, cancer has recently emerged as a significant risk factor for arterial thromboembolism, including stroke; however, the underlying mechanisms are uncertain. In addition, the optimal strategies to prevent and acutely treat stroke in cancer patients are yet to be established. This review summarizes the current evidence on ischemic stroke risk, biomarkers, pathophysiology, treatments, and prognosis in cancer patients, emphasizing knowledge gaps and the potential strategies to address them. Ann Neurol 2018;83:873-883.

Journal ArticleDOI
TL;DR: In a multicenter study, the frequency of perivenular lesions in MS versus systemic autoimmune diseases with CNS involvement and primary angiitis of the CNS (PACNS) is assessed.
Abstract: Objectives In multiple sclerosis (MS), magnetic resonance imaging (MRI) is a sensitive tool for detecting white matter lesions, but its diagnostic specificity is still suboptimal; ambiguous cases are frequent in clinical practice. Detection of perivenular lesions in the brain (the "central vein sign") improves the pathological specificity of MS diagnosis, but comprehensive evaluation of this MRI biomarker in MS-mimicking inflammatory and/or autoimmune diseases, such as central nervous system (CNS) inflammatory vasculopathies, is lacking. In a multicenter study, we assessed the frequency of perivenular lesions in MS versus systemic autoimmune diseases with CNS involvement and primary angiitis of the CNS (PACNS). Methods In 31 patients with inflammatory CNS vasculopathies and 52 with relapsing-remitting MS, 3-dimensional T2*-weighted and T2-fluid-attenuated inversion recovery images were obtained during a single MRI acquisition after gadolinium injection. For each lesion, the central vein sign was evaluated according to consensus guidelines. For each patient, lesion count, volume, and brain location, as well as fulfillment of dissemination in space MRI criteria, were assessed. Results MS showed higher frequency of perivenular lesions (median = 88%) than did inflammatory CNS vasculopathies (14%), without overlap between groups or differences between 3T and 1.5T MRI. Among inflammatory vasculopathies, Behcet disease showed the highest median frequency of perivenular lesions (34%), followed by PACNS (14%), antiphospholipid syndromes (12%), Sjogren syndrome (11%), and systemic lupus erythematosus (0%). When a threshold of 50% perivenular lesions was applied, central vein sign discriminated MS from inflammatory vasculopathies with a diagnostic accuracy of 100%. Interpretation The central vein sign differentiates inflammatory CNS vasculopathies from MS at standard clinical magnetic field strengths. Ann Neurol 2018;83:283-294.

Journal ArticleDOI
TL;DR: This work investigated how well HFOs and spikes can predict epileptogenic regions with a large spatial sampling at the patient level.
Abstract: Objective: High-frequency oscillations (HFOs) in intracerebral EEG (stereoencephalography, SEEG) are considered as better biomarkers of epileptogenic tissues than spikes. How this can be applied at the patient level remains poorly understood. We investigated how well the HFOs and the spikes can predict epileptogenic regions with a large spatial sampling at the patient level. Methods: We analyzed non-REM sleep SEEG recordings sampled at 2048 Hz of thirty patients. Ripples (R, 80-250 Hz), fast ripples (FR, 250-500 Hz) and spikes were automatically detected. Rates of these markers and several combinations – spikes co-occurring with HFOs or FRs and cross rate (Spk ⊗ HFO) – were compared to a quantified measure of the seizure onset zone (SOZ) by performing a receiver operating characteristic analysis for each patient individually. We used a Wilcoxon sign rank test corrected for false-discovery rate to assess whether a marker was better than the others for predicting the SOZ. Results: A total of 2930 channels was analyzed (median of 100 channels per patient). The HFOs or any of its variants were not statistically better than spikes. Only one feature, the cross-rate was better than all the other markers. Moreover, fast ripples, even though very specific, did not delineate all epileptogenic tissues. Interpretation: At the patient level, the performance of the HFOs is weakened by the presence of strong physiological HFO generators. Fast ripples are not sensitive enough to be the unique biomarker of epileptogenicity. Nevertheless, combining HFOs and spikes using our proposed measure –the cross rate– is a better strategy than using only one marker.

Journal ArticleDOI
TL;DR: The range of orthostatic heart rate changes in patients with autonomic failure caused by neurodegenerative synucleinopathies is reported.
Abstract: OBJECTIVE Blunted tachycardia during hypotension is a characteristic feature of patients with autonomic failure, but the range has not been defined. This study reports the range of orthostatic heart rate (HR) changes in patients with autonomic failure caused by neurodegenerative synucleinopathies. METHODS Patients evaluated at sites of the U.S. Autonomic Consortium (NCT01799915) underwent standardized autonomic function tests and full neurological evaluation. RESULTS We identified 402 patients with orthostatic hypotension (OH) who had normal sinus rhythm. Of these, 378 had impaired sympathetic activation (ie, neurogenic OH) and based on their neurological examination were diagnosed with Parkinson disease, dementia with Lewy bodies, pure autonomic failure, or multiple system atrophy. The remaining 24 patients had preserved sympathetic activation and their OH was classified as nonneurogenic, due to volume depletion, anemia, or polypharmacy. Patients with neurogenic OH had twice the fall in systolic blood pressure (SBP; -44 ± 25 vs -21 ± 14 mmHg [mean ± standard deviation], p < 0.0001) but only one-third of the increase in HR of those with nonneurogenic OH (8 ± 8 vs 25 ± 11 beats per minute [bpm], p < 0.0001). A ΔHR/ΔSBP ratio of 0.492 bpm/mmHg had excellent sensitivity (91.3%) and specificity (88.4%) to distinguish between patients with neurogenic from nonneurogenic OH (area under the curve = 0.96, p < 0.0001). Within patients with neurogenic OH, HR increased more in those with multiple system atrophy (p = 0.0003), but there was considerable overlap with patients with Lewy body disorders. INTERPRETATION A blunted HR increase during hypotension suggests a neurogenic cause. A ΔHR/ΔSBP ratio < 0.5 bpm/mmHg is diagnostic of neurogenic OH. Ann Neurol 2018;83:522-531.

Journal ArticleDOI
TL;DR: Autoantibodies against myelin oligodendrocyte glycoprotein occur in a proportion of patients with inflammatory demyelinating diseases of the central nervous system and their pathogenic activity is analyzed by affinity‐purifying these antibodies from patients and transferring them to experimental animals.
Abstract: Objective Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) occur in a proportion of patients with inflammatory demyelinating diseases of the central nervous system (CNS). We analyzed their pathogenic activity by affinity-purifying these antibodies (Abs) from patients and transferring them to experimental animals. Methods Patients with Abs to MOG were identified by cell-based assay. We determined the cross-reactivity to rodent MOG and the recognized MOG epitopes. We produced the correctly folded extracellular domain of MOG and affinity-purified MOG-specific Abs from the blood of patients. These purified Abs were used to stain CNS tissue and transferred in 2 models of experimental autoimmune encephalomyelitis. Animals were analyzed histopathologically. Results We identified 17 patients with MOG Abs from our outpatient clinic and selected 2 with a cross-reactivity to rodent MOG; both had recurrent optic neuritis. Affinity-purified Abs recognized MOG on transfected cells and stained myelin in tissue sections. The Abs from the 2 patients recognized different epitopes on MOG, the CC' and the FG loop. In both patients, these Abs persisted during our observation period of 2 to 3 years. The anti-MOG Abs from both patients were pathogenic upon intrathecal injection in 2 different rat models. Together with cognate MOG-specific T cells, these Abs enhanced T-cell infiltration; together with myelin basic protein-specific T cells, they induced demyelination associated with deposition of C9neo, resembling a multiple sclerosis type II pathology. Interpretation MOG-specific Abs affinity purified from patients with inflammatory demyelinating disease induce pathological changes in vivo upon cotransfer with myelin-reactive T cells, suggesting that these Abs are similarly pathogenic in patients. Ann Neurol 2018;84:315-328.

Journal ArticleDOI
TL;DR: This project establishes region‐specific normative values for physiological HFOs and high‐frequency activity (HFA) in the epileptogenic zone.
Abstract: Objective High-frequency oscillations (HFOs) are a promising biomarker for the epileptogenic zone. It has not been possible, however, to differentiate physiological from pathological HFOs, and baseline rates of HFO occurrence vary substantially across brain regions. This project establishes region-specific normative values for physiological HFOs and high-frequency activity (HFA). Methods Intracerebral stereo-encephalographic recordings with channels displaying normal physiological activity from nonlesional tissue were selected from 2 tertiary epilepsy centers. Twenty-minute sections from N2/N3 sleep were selected for automatic detection of ripples (80-250Hz), fast ripples (>250Hz), and HFA defined as long-lasting activity > 80Hz. Normative values are provided for 17 brain regions. Results A total of 1,171 bipolar channels with normal physiological activity from 71 patients were analyzed. The highest rates of ripples were recorded in the occipital cortex, medial and basal temporal region, transverse temporal gyrus and planum temporale, pre- and postcentral gyri, and medial parietal lobe. The mean rate of fast ripples was very low (0.038/min). Only 5% of channels had a rate > 0.2/min HFA was observed in the medial occipital lobe, pre- and postcentral gyri, transverse temporal gyri and planum temporale, and lateral occipital lobe. Interpretation This multicenter atlas is the first to provide region-specific normative values for physiological HFO rates and HFA in common stereotactic space; rates above these can now be considered pathological. Physiological ripples are frequent in eloquent cortex. In contrast, physiological fast ripples are very rare, making fast ripples a good candidate for defining the epileptogenic zone. Ann Neurol 2018;84:374-385.

Journal ArticleDOI
TL;DR: This work investigates whether an antisense oligonucleotide (ASO) targeting the SCA3 disease gene, ATXN3, can prevent molecular, neuropathological, electrophysiological, and behavioral features of the disease in a mouse model ofSCA3.
Abstract: Objective Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common dominantly inherited ataxia. Despite advances in understanding this CAG repeat/polyglutamine expansion disease, there are still no therapies to alter its progressive fatal course. Here, we investigate whether an antisense oligonucleotide (ASO) targeting the SCA3 disease gene, ATXN3, can prevent molecular, neuropathological, electrophysiological, and behavioral features of the disease in a mouse model of SCA3. Methods The top ATXN3-targeting ASO from an in vivo screen was injected intracerebroventricularly into early symptomatic transgenic SCA3 mice that express the full human disease gene and recapitulate key disease features. Following a single ASO treatment at 8 weeks of age, mice were evaluated longitudinally for ATXN3 suppression and rescue of disease-associated pathological changes. Mice receiving an additional repeat injection at 21 weeks were evaluated longitudinally up to 29 weeks for motor performance. Results The ATXN3-targeting ASO achieved sustained reduction of polyglutamine-expanded ATXN3 up to 8 weeks after treatment and prevented oligomeric and nuclear accumulation of ATXN3 up to at least 14 weeks after treatment. Longitudinal ASO therapy rescued motor impairment in SCA3 mice, and this rescue was associated with a recovery of defects in Purkinje neuron firing frequency and afterhyperpolarization. Interpretation This preclinical study established efficacy of ATXN3-targeted ASOs as a disease-modifying therapeutic strategy for SCA3. These results support further efforts to develop ASOs for human clinical trials in this polyglutamine disease as well as in other dominantly inherited disorders caused by toxic gain of function. Ann Neurol 2018;83:64-77.

Journal ArticleDOI
David Bergeron1, David Bergeron2, Maria Luisa Gorno-Tempini3, Gil D. Rabinovici3, Miguel A. Santos-Santos3, William W. Seeley3, Bruce L. Miller3, Yolande A.L. Pijnenburg1, M. Antoinette Keulen1, Colin Groot1, Bart N.M. van Berckel4, Wiesje M. van der Flier1, Philip Scheltens1, Jonathan D. Rohrer5, Jason D. Warren5, Jonathan M. Schott5, Nick C. Fox5, Raquel Sánchez-Valle, Oriol Grau-Rivera, Ellen Gelpi6, Harro Seelaar7, Janne M. Papma7, John C. van Swieten7, John R. Hodges8, John R. Hodges9, John R. Hodges10, Cristian E. Leyton11, Olivier Piguet10, Olivier Piguet9, Olivier Piguet8, Emily Rogalski12, Emily Rogalski13, M.-Marsel Mesulam12, Lejla Koric, Kristensen Nora, Jeéreémie Pariente14, Bradford C. Dickerson11, Ian R. A. Mackenzie15, Ging-Yuek Robin Hsiung15, Serge Belliard15, David J. Irwin16, David A. Wolk16, Murray Grossman16, Matthew Jones17, Jennifer M. Harris17, David G. Mann17, Julie S. Snowden17, Patricio Chrem-Méndez, Ismael Calandri, Alejandra A. Amengual, Carole Miguet-Alfonsi, Eloi Magnin, Giuseppe Magnani18, Roberto Santangelo18, Vincent Deramecourt19, Florence Pasquier19, Niklas Mattsson20, Christer Nilsson20, Oskar Hansson20, Julia Keith21, Mario Masellis21, Sandra E. Black21, Jordi A. Matías-Guiu22, María Nieves Cabrera-Martín22, Claire Paquet, Julien Dumurgier, Marc Teichmann, Marie Sarazin23, Marie Sarazin24, Michel Bottlaender23, Michel Bottlaender24, Bruno Dubois, Christopher C. Rowe25, Victor L. Villemagne25, Rik Vandenberghe26, Elias Granadillo27, Edmond Teng27, Mario F. Mendez28, Philipp T. Meyer29, Lars Frings29, Alberto Lleó30, Rafael Blesa30, Juan Fortea30, Sang Won Seo31, Janine Diehl-Schmid32, Timo Grimmer32, Kristian Steen Frederiksen, Pascual Sánchez-Juan, Gaël Chételat33, Willemijn J. Jansen34, Rémi W. Bouchard2, Robert Laforce2, Pieter Jelle Visser34, Rik Ossenkoppele1, Rik Ossenkoppele20 
TL;DR: To estimate the prevalence of amyloid positivity, defined by positron emission tomography (PET)/cerebrospinal fluid (CSF) biomarkers and/or neuropathological examination, in primary progressive aphasia (PPA) variants, PET/CSF biomarkers are used.
Abstract: OBJECTIVE: To estimate the prevalence of amyloid-positivity, defined by PET/CSF biomarkers and/or neuropathological examination, in primary progressive aphasia (PPA) variants. METHODS: We conducted a meta-analysis with individual participant data from 1,251 patients diagnosed with PPA (including logopenic [lvPPA, n=443], non-fluent [nfvPPA, n=333], semantic [svPPA, n=401] and mixed/unclassifiable [PPA-M/U, n=74] variants of PPA) from 36 centers, with a measure of amyloid-β pathology (CSF [n=600]), PET [n=366] and/or autopsy [n=378]) available. The estimated prevalence of amyloid-positivity according to PPA variant, age and apolipoprotein E (APOE) e4 status was determined using generalized estimating equation models. RESULTS: Amyloid-β positivity was more prevalent in lvPPA (86%) than in nfvPPA (20%) or svPPA (16%) (p<0.001). Prevalence of amyloid-β positivity increased with age in nfvPPA (from 10% at age 50 to 27% at age 80, p<0.01) and svPPA (from 6% at age 50 to 32% at age 80, p<0.001), but not in lvPPA (p=0.94). Across PPA variants, APOE e4 carriers were more often amyloid-β positive (58.0%) than non-carriers (35.0%, p<0.001). Autopsy data revealed Alzheimer's disease (AD) pathology as the most common pathologic diagnosis in lvPPA (76%), frontotemporal lobar degeneration - TDP-43 in svPPA (80%) and frontotemporal lobar degeneration-TDP-43/tau in nfvPPA (64%). INTERPRETATION: This study shows that the current PPA classification system helps to predict underlying pathology across different cohorts and clinical settings, and suggests that age and APOE genotype should be taken into account when interpreting Aβ biomarkers in PPA patients. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: To investigate parameters associated with hematoma enlargement in non–vitamin K antagonist oral anticoagulant (NOAC)‐related intracerebral hemorrhage (ICH), a large number of animals were fitted with EMTs.
Abstract: OBJECTIVE To investigate parameters associated with hematoma enlargement in non-vitamin K antagonist oral anticoagulant (NOAC)-related intracerebral hemorrhage (ICH). METHODS This retrospective cohort study includes individual patient data for 190 patients with NOAC-associated ICH over a 5-year period (2011-2015) at 19 departments of neurology across Germany. Primary outcome was the association of prothrombin complex concentrate (PCC) administration with hematoma enlargement. Subanalyses were calculated for blood pressure management and its association with the primary outcome. Secondary outcomes include associations with in-hospital mortality and functional outcome at 3 months assessed using the modified Rankin Scale. RESULTS The study population for analysis of primary and secondary outcomes consisted of 146 NOAC-ICH patients with available follow-up imaging. Hematoma enlargement occurred in 49/146 (33.6%) patients with NOAC-related ICH. Parameters associated with hematoma enlargement were blood pressure ≥ 160mmHg within 4 hours and-in the case of factor Xa inhibitor ICH-anti-Xa levels on admission. PCC administration prior to follow-up imaging was not significantly associated with a reduced rate of hematoma enlargement either in overall NOAC-related ICH or in patients with factor Xa inhibitor intake (NOAC: risk ratio [RR] = 1.150, 95% confidence interval [CI] = 0.632-2.090; factor Xa inhibitor: RR = 1.057, 95% CI = 0.565-1.977), regardless of PCC dosage given or time interval until imaging or treatment. Systolic blood pressure levels < 160mmHg within 4 hours after admission were significantly associated with a reduction in the proportion of patients with hematoma enlargement (RR = 0.598, 95% CI = 0.365-0.978). PCC administration had no effect on mortality and functional outcome either at discharge or at 3 months. INTERPRETATION In contrast to blood pressure control, PCC administration was not associated with a reduced rate of hematoma enlargement in NOAC-related ICH. Our findings support the need of further investigations exploring new hemostatic reversal strategies for patients with factor Xa inhibitor-related ICH. Ann Neurol 2018;83:186-196.

Journal ArticleDOI
TL;DR: To evaluate the outcomes 1 year and longer following stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy in a large series of patients treated over a 5‐year period since introduction of this novel technique.
Abstract: Objective To evaluate the outcomes 1 year and longer following stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy in a large series of patients treated over a 5-year period since introduction of this novel technique. Methods Surgical outcomes of a consecutive series of 58 patients with mesial temporal lobe epilepsy who underwent the surgery at our institution with at least 12 months of follow-up were retrospectively evaluated. A subgroup analysis was performed comparing patients with and without mesial temporal sclerosis. Results One year following stereotactic laser amygdalohippocampotomy, 53.4% (95% confidence interval [CI] = 40.8-65.7%) of all patients were free of disabling seizures (Engel I). Three of 9 patients became seizure-free following repeat ablation. Subgroup analysis showed that 60.5% (95% CI = 45.6-73.7%) of patients with mesial temporal sclerosis were free of disabling seizures as compared to 33.3% (95% CI = 15.0-58.5%) of patients without mesial temporal sclerosis. Quality of Life in Epilepsy-31 scores significantly improved at the group level, few procedure-related complications were observed, and verbal memory outcome was better than historical open resection data. Interpretation In an unselected consecutive series of patients, stereotactic laser amygdalohippocampotomy yielded seizure-free rates for patients with mesial temporal lobe epilepsy lower than, but comparable to, the outcomes typically associated with open temporal lobe surgery. Analogous to results from open surgery, patients without mesial temporal sclerosis fared less well. This novel procedure is an effective minimally invasive alternative to resective surgery. In the minority of patients not free of disabling seizures, laser ablation presents no barrier to additional open surgery. Ann Neurol 2018;83:575-587.

Journal ArticleDOI
TL;DR: Results at a 2‐ year follow‐up after MRgFUS thalamotomy for ET are reported.
Abstract: OBJECTIVE Magnetic resonance guided focused ultrasound (MRgFUS) has recently been investigated as a new treatment modality for essential tremor (ET), but the durability of the procedure has not yet been evaluated. This study reports results at a 2- year follow-up after MRgFUS thalamotomy for ET. METHODS A total of 76 patients with moderate-to-severe ET, who had not responded to at least two trials of medical therapy, were enrolled in the original randomized study of unilateral thalamotomy and evaluated using the clinical rating scale for tremor. Sixty-seven of the patients continued in the open-label extension phase of the study with monitoring for 2 years. Nine patients were excluded by 2 years, for example, because of alternative therapy such as deep brain stimulation (n = 3) or inadequate thermal lesioning (n = 1). However, all patients in each follow-up period were analyzed. RESULTS Mean hand tremor score at baseline (19.8 ± 4.9; 76 patients) improved by 55% at 6 months (8.6 ± 4.5; 75 patients). The improvement in tremor score from baseline was durable at 1 year (53%; 8.9 ± 4.8; 70 patients) and at 2 years (56%; 8.8 ± 5.0; 67 patients). Similarly, the disability score at baseline (16.4 ± 4.5; 76 patients) improved by 64% at 6 months (5.4 ± 4.7; 75 patients). This improvement was also sustained at 1 year (5.4 ± 5.3; 70 patients) and at 2 years (6.5 ± 5.0; 67 patients). Paresthesias and gait disturbances were the most common adverse effects at 1 year-each observed in 10 patients with an additional 5 patients experiencing neurological adverse effects. None of the adverse events worsened over the period of follow-up, and 2 of these resolved. There were no new delayed complications at 2 years. INTERPRETATION Tremor suppression after MRgFUS thalamotomy for ET is stably maintained at 2 years. Latent or delayed complications do not develop after treatment. Ann Neurol 2018;83:107-114.

Journal ArticleDOI
TL;DR: Investigation of the therapeutic potential of the interleukin‐6 receptor inhibitor tocilizumab in patients with new onset refractory status epilepticus found no recurrence of SE, however, 2 patients experienced severe adverse events related to infection during the tocilIZumab therapy.
Abstract: We investigated the therapeutic potential of the interleukin-6 receptor inhibitor tocilizumab in 7 patients with new onset refractory status epilepticus (NORSE) who remained refractory to conventional immunotherapy with rituximab (n = 5) or without rituximab (n = 2). Status epilepticus (SE) was terminated after 1 or 2 doses of tocilizumab in 6 patients with a median interval of 3 days from the initiation. They had no recurrence of SE during the observation. However, 2 patients experienced severe adverse events related to infection during the tocilizumab therapy. Further prospective controlled studies are warranted to validate the efficacy and safety of tocilizumab in patients with NORSE. Ann Neurol 2018;84:940-945.

Journal ArticleDOI
TL;DR: To identify novel causes of recessive ataxIAS, including spinocerebellar ataxia with saccadic intrusions, spastic ataxias, and spastic paraplegia.
Abstract: Objective: To identify novel causes of recessive ataxias, including spinocerebellar ataxia with saccadic intrusions, spastic ataxias, and spastic paraplegia. Methods: In an international collaboration, we independently performed exome sequencing in 7 families with recessive ataxia and/or spastic paraplegia. To evaluate the role of VPS13D mutations, we evaluated a Drosophila knockout model and investigated mitochondrial function in patient-derived fibroblast cultures. Results: Exome sequencing identified compound heterozygous mutations in VPS13D on chromosome 1p36 in all 7 families. This included a large family with 5 affected siblings with spinocerebellar ataxia with saccadic intrusions (SCASI), or spinocerebellar ataxia, recessive, type 4 (SCAR4). Linkage to chromosome 1p36 was found in this family with a logarithm of odds score of 3.1. The phenotypic spectrum in our 12 patients was broad. Although most presented with ataxia, additional or predominant spasticity was present in 5 patients. Disease onset ranged from infancy to 39 years, and symptoms were slowly progressive and included loss of independent ambulation in 5. All but 2 patients carried a loss-of-function (nonsense or splice site) mutation on one and a missense mutation on the other allele. Knockdown or removal of Vps13D in Drosophila neurons led to changes in mitochondrial morphology and impairment in mitochondrial distribution along axons. Patient fibroblasts showed altered morphology and functionality including reduced energy production. Interpretation: Our study demonstrates that compound heterozygous mutations in VPS13D cause movement disorders along the ataxia–spasticity spectrum, making VPS13D the fourth VPS13 paralog involved in neurological disorders. Ann Neurol 2018.

Journal ArticleDOI
TL;DR: This study tested whether intravenous thrombolysis ≤4.5 hours from the time of symptom discovery is safe in patients with qDFM in an open‐label, phase 2a, prospective study (NCT01282242).
Abstract: Objective Most acute ischemic stroke (AIS) patients with unwitnessed symptom onset are ineligible for intravenous thrombolysis due to timing alone. Lesion evolution on fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) correlates with stroke duration, and quantitative mismatch of diffusion-weighted MRI with FLAIR (qDFM) might indicate stroke duration within guideline-recommended thrombolysis. We tested whether intravenous thrombolysis ≤4.5 hours from the time of symptom discovery is safe in patients with qDFM in an open-label, phase 2a, prospective study (NCT01282242). Methods Patients aged 18 to 85 years with AIS of unwitnessed onset at 4.5 to 24 hours since they were last known to be well, treatable within 4.5 hours of symptom discovery with intravenous alteplase (0.9mg/kg), and presenting with qDFM were screened across 14 hospitals. The primary outcome was the risk of symptomatic intracranial hemorrhage (sICH) with preplanned stopping rules. Secondary outcomes included symptomatic brain edema risk, and functional outcomes of 90-day modified Rankin Scale (mRS). Results Eighty subjects were enrolled between January 31, 2011 and October 4, 2015 and treated with alteplase at median 11.2 hours (IQR = 9.5-13.3) from when they were last known to be well. There was 1 sICH (1.3%) and 3 cases of symptomatic edema (3.8%). At 90 days, 39% of subjects achieved mRS = 0-1, as did 48% of subjects who had vessel imaging and were without large vessel occlusions. Interpretation Intravenous thrombolysis within 4.5 hours of symptom discovery in patients with unwitnessed stroke selected by qDFM, who are beyond the recommended time windows, is safe. A randomized trial testing efficacy using qDFM appears feasible and is warranted in patients without large vessel occlusions. Ann Neurol 2018;83:980-993.