scispace - formally typeset
Search or ask a question

Showing papers by "Deepto Chakrabarty published in 2020"


Journal ArticleDOI
TL;DR: In this paper, the authors present a coherent timing analysis of the 401 Hz pulsations of the accreting millisecond X-ray pulsar SAX J1808.4-3658 during its 2019 outburst.
Abstract: In this paper we present a coherent timing analysis of the 401 Hz pulsations of the accreting millisecond X-ray pulsar SAX J1808.4-3658 during its 2019 outburst. Using observations collected with the Neutron Star Interior Composition Explorer (NICER), we establish the pulsar spin frequency and orbital phase during its latest epoch. We find that the 2019 outburst shows a pronounced evolution in pulse phase over the course of the outburst. These phase shifts are found to correlate with the source flux, and are interpreted in terms of hot-spot drift on the stellar surface, driven by changes in the mass accretion rate. Additionally, we find that the long-term evolution of the pulsar spin frequency shows evidence for a modulation at the Earth's orbital period, enabling pulsar timing based astrometry of this accreting millisecond pulsar.

29 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present the detection of five thermonuclear (Type I) X-ray bursts from Swift J1858.6-0814, implying that the compact object in the system is a neutron star.
Abstract: Swift J1858.6-0814 is a recently discovered X-ray binary notable for extremely strong variability (by factors $>100$ in soft X-rays) in its discovery state. We present the detection of five thermonuclear (Type I) X-ray bursts from Swift J1858.6-0814, implying that the compact object in the system is a neutron star. Some of the bursts show photospheric radius expansion, so their peak flux can be used to estimate the distance to the system. The peak luminosity, and hence distance, can depend on several system parameters; for the most likely values, a high inclination and a helium atmosphere, $D=12.8_{-0.6}^{+0.8}$ kpc, although systematic effects allow a conservative range of $9-18$ kpc. Before one burst, we detect a QPO at $9.6\pm0.5$ mHz with a fractional rms amplitude of $2.2\pm0.2$% ($0.5-10$ keV), likely due to marginally stable burning of helium; similar oscillations may be present before the other bursts but the light curves are not long enough to allow their detection. We also search for burst oscillations but do not detect any, with an upper limit in the best case of 15% fractional amplitude (over $1-8$ keV). Finally, we discuss the implications of the neutron star accretor and this distance on other inferences which have been made about the system. In particular, we find that Swift J1858.6-0814 was observed at super-Eddington luminosities at least during bright flares during the variable stage of its outburst.

17 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used NuSTAR and NICER observations obtained during the 2018 accretion outburst of the neutron star LMXB 4U 1608−52, to study changes in the reflection spectrum.
Abstract: It is commonly assumed that the properties and geometry of the accretion flow in transient low-mass X-ray binaries (LMXBs) significantly change when the X-ray luminosity decays below ∼10⁻² of the Eddington limit (L_(Edd)). However, there are few observational cases where the evolution of the accretion flow is tracked in a single X-ray binary over a wide dynamic range. In this work, we use NuSTAR and NICER observations obtained during the 2018 accretion outburst of the neutron star LMXB 4U 1608−52, to study changes in the reflection spectrum. We find that the broad Fe–Kα line and Compton hump, clearly seen during the peak of the outburst when the X-ray luminosity is ∼10³⁷ erg s⁻¹ (∼0.05 L_(Edd)), disappear during the decay of the outburst when the source luminosity drops to ∼4.5 × 10³⁵ erg s⁻¹ (∼0.002 L_(Edd)). We show that this non-detection of the reflection features cannot be explained by the lower signal-to-noise ratio at lower flux, but is instead caused by physical changes in the accretion flow. Simulating synthetic NuSTAR observations on a grid of inner disc radius, disc ionization, and reflection fraction, we find that the disappearance of the reflection features can be explained by either increased disc ionization (log ξ ≳ 4.1) or a much decreased reflection fraction. A changing disc truncation alone, however, cannot account for the lack of reprocessed Fe–Kα emission. The required increase in ionization parameter could occur if the inner accretion flow evaporates from a thin disc into a geometrically thicker flow, such as the commonly assumed formation of a radiatively inefficient accretion flow at lower mass accretion rates.

13 citations


Proceedings ArticleDOI
13 Dec 2020
TL;DR: The Pioneer Soft X-ray Polarimeter (PiSoX) as mentioned in this paper is a SmallSat, designed for NASA's call for Astrophysics Pioneers, small missions that could be CubeSats, balloon experiments, or SmallSats.
Abstract: We describe a new implementation of a broad-band soft X-ray polarimeter, substantially based on a previous design. This implementation, the Pioneer Soft X-ray Polarimeter (PiSoX) is a SmallSat, designed for NASA’s call for Astrophysics Pioneers, small missions that could be CubeSats, balloon experiments, or SmallSats. As in REDSoX, the grating arrangement is designed optimally for the purpose of polarimetry with broad-band focussing optics by matching the dispersion of the spectrometer channels to laterally graded multilayers (LGMLs). The system can achieve polarization modulation factors over 90%. For PiSoX, the optics are lightweight Si mirrors in a one-bounce parabolic configuration. High efficiency, blazed gratings from opposite sectors are oriented to disperse to a LGML forming a channel covering the wavelength range from 35 A to 75 A (165 - 350 eV). Upon satellite rotation, the intensities of the dispersed spectra, after reflection and polarizing by the LGMLs, give the three Stokes parameters needed to determine a source’s linear polarization fraction and orientation. The design can be extended to higher energies as LGMLs are developed further. We describe examples of the potential scientific return from instruments based on this design.

8 citations



Journal ArticleDOI
TL;DR: In this article, the authors reported on five days of observations during which they detected three thermonuclear (Type-I) X-ray bursts, identifying the system as a neutron star LMXB.
Abstract: MAXI J1807+132 is a low-mass X-ray binary (LMXB) first detected in outburst in 2017. Observations during the 2017 outburst did not allow for an unambiguous identification of the nature of the compact object. MAXI J1807+132 was detected in outburst again in 2019 and was monitored regularly with NICER. In this paper we report on five days of observations during which we detected three thermonuclear (Type-I) X-ray bursts, identifying the system as a neutron star LMXB. Time-resolved spectroscopy of the three Type-I bursts revealed typical characteristics expected for these phenomena. All three Type-I bursts show slow rises and long decays, indicative of mixed H/He fuel. We find no strong evidence that any of the Type-I bursts reached the Eddington Luminosity; however, under the assumption that the brightest X-ray burst underwent photospheric radius expansion, we estimate a <12.4kpc upper limit for the distance. We searched for burst oscillations during the Type-I bursts from MAXI J1807+132 and found none (<10% amplitude upper limit at 95% confidence level). Finally, we found that the brightest Type-I burst shows a ~1.6sec pause during the rise. This pause is similar to one recently found with NICER in a bright Type-I burst from the accreting millisecond X-ray pulsar SAX J1808.4-3658. The fact that Type-I bursts from both sources can show this type of pause suggests that the origin of the pauses is independent of the composition of the burning fuel, the peak luminosity of the Type-I bursts, or whether the NS is an X-ray pulsar.

5 citations



Posted Content
TL;DR: The Pioneer Soft X-ray Polarimeter (PiSoX) as discussed by the authors is a SmallSat, designed for NASA's call for Astrophysics Pioneers, small missions that could be CubeSats, balloon experiments, or SmallSats.
Abstract: We describe a new implementation of a broad-band soft X-ray polarimeter, substantially based on a previous design. This implementation, the Pioneer Soft X-ray Polarimeter (PiSoX) is a SmallSat, designed for NASA's call for Astrophysics Pioneers, small missions that could be CubeSats, balloon experiments, or SmallSats. As in the REDSoX Polarimeter, the grating arrangement is designed optimally for the purpose of polarimetry with broad-band focussing optics by matching the dispersion of the spectrometer channels to laterally graded multilayers (LGMLs). The system can achieve polarization modulation factors over 90%. For PiSoX, the optics are lightweight Si mirrors in a one-bounce parabolic configuration. High efficiency, blazed gratings from opposite sectors are oriented to disperse to a LGML forming a channel covering the wavelength range from 35 to 75 Angstroms (165 - 350 eV). Upon satellite rotation, the intensities of the dispersed spectra, after reflection and polarizing by the LGMLs, give the three Stokes parameters needed to determine a source's linear polarization fraction and orientation. The design can be extended to higher energies as LGMLs are developed further. We describe examples of the potential scientific return from instruments based on this design.

2 citations



Journal ArticleDOI
TL;DR: In this article, the Neutron Star Interior Composition Explorer (NSIC) was used to detect 32 thermonuclear X-ray bursts, with an average burst recurrence time of $2.0^{+0.4}_{-0.3}
Abstract: In this work we report on observations with the Neutron Star Interior Composition Explorer of the known neutron star X-ray transient XTE J1739-285. We observed the source in 2020 February and March, finding it in a highly active bursting state. Across a 20-day period, we detected 32 thermonuclear X-ray bursts, with an average burst recurrence time of $2.0^{+0.4}_{-0.3}$ hr. A timing and spectral analysis of the ensemble of X-ray bursts reveals homogeneous burst properties, evidence for short-recurrence time bursts, and the detection of a 386.5 Hz burst oscillation candidate. The latter is especially notable, given that a previous study of this source claimed a 1122 Hz burst oscillation candidate. We did not find any evidence of variability near 1122 Hz, and instead find that the 386.5 Hz oscillation is the more prominent signal of the two burst oscillation candidates. Hence, we conclude it is unlikely that XTE J1739-285 has a sub-millisecond rotation period.