scispace - formally typeset
Search or ask a question

Showing papers by "Graeme Milligan published in 2020"



Journal ArticleDOI
04 Nov 2020-Nature
TL;DR: In this article, the authors integrate data from human tissue-level transcriptomes, GPCR sequences and structures, proteomics, single-cell transcriptomics, population-wide genetic association studies and pharmacological experiments.
Abstract: G-protein-coupled receptors (GPCRs) are membrane proteins that modulate physiology across human tissues in response to extracellular signals. GPCR-mediated signalling can differ because of changes in the sequence1,2 or expression3 of the receptors, leading to signalling bias when comparing diverse physiological systems4. An underexplored source of such bias is the generation of functionally diverse GPCR isoforms with different patterns of expression across different tissues. Here we integrate data from human tissue-level transcriptomes, GPCR sequences and structures, proteomics, single-cell transcriptomics, population-wide genetic association studies and pharmacological experiments. We show how a single GPCR gene can diversify into several isoforms with distinct signalling properties, and how unique isoform combinations expressed in different tissues can generate distinct signalling states. Depending on their structural changes and expression patterns, some of the detected isoforms may influence cellular responses to drugs and represent new targets for developing drugs with improved tissue selectivity. Our findings highlight the need to move from a canonical to a context-specific view of GPCR signalling that considers how combinatorial expression of isoforms in a particular cell type, tissue or organism collectively influences receptor signalling and drug responses.

74 citations


Journal ArticleDOI
29 Jul 2020
TL;DR: Views are provided on a better understanding of the extent and molecular basis for species selective GPR35 pharmacology and the production of novel mouse models in which both “on-target” and “off-target
Abstract: GPR35 is a class A, rhodopsin-like G protein-coupled receptor (GPCR) first identified more than 20 years ago. In the intervening period, identification of strong expression in the lower intestine and colon, in a variety of immune cells including monocytes and a variety of dendritic cells, and in dorsal root ganglia has suggested potential therapeutic opportunities in targeting this receptor in a range of conditions. GPR35 is, however, unusual in a variety of ways that challenge routes to translation. These include the following: (i) Although a substantial range and diversity of endogenous ligands have been suggested as agonist partners for this receptor, it officially remains defined as an "orphan" GPCR. (ii) Humans express two distinct protein isoform sequences, while rodents express only a single form. (iii) The pharmacologies of the human and rodent orthologues of GPR35 are very distinct, with variation between rat and mouse GPR35 being as marked as that between either of these species and the human forms. Herein we provide perspectives on each of the topics above as well as suggesting ways to overcome the challenges currently hindering potential translation. These include a better understanding of the extent and molecular basis for species selective GPR35 pharmacology and the production of novel mouse models in which both "on-target" and "off-target" effects of presumptive GPR35 ligands can be better defined, as well as a clear understanding of the human isoform expression profile and its significance at both tissue and individual cell levels.

37 citations


Journal ArticleDOI
TL;DR: At once-daily doses of 3 and 10 mg/kg, GLPG1205 reduced disease activity index score and neutrophil infiltration in a mouse dextran sodium sulfate-induced chronic inflammatory bowel disease model, with efficacy similar to positive-control compound sulfasalazine.
Abstract: GPR84 is a medium chain free fatty acid-binding G-protein-coupled receptor associated with inflammatory and fibrotic diseases. As the only reported antagonist of GPR84 (PBI-4050) that displays relatively low potency and selectivity, a clear need exists for an improved modulator. Structural optimization of GPR84 antagonist hit 1, identified through high-throughput screening, led to the identification of potent and selective GPR84 inhibitor GLPG1205 (36). Compared with the initial hit, 36 showed improved potency in a guanosine 5'-O-[γ-thio]triphosphate assay, exhibited metabolic stability, and lacked activity against phosphodiesterase-4. This novel pharmacological tool allowed investigation of the therapeutic potential of GPR84 inhibition. At once-daily doses of 3 and 10 mg/kg, GLPG1205 reduced disease activity index score and neutrophil infiltration in a mouse dextran sodium sulfate-induced chronic inflammatory bowel disease model, with efficacy similar to positive-control compound sulfasalazine. The drug discovery steps leading to GLPG1205 identification, currently under phase II clinical investigation, are described herein.

22 citations


Journal ArticleDOI
TL;DR: The physiological and pathological expression profile of G PR84 is considered and, in the absence of direct structural information, recent developments and use of GPR84 pharmacological tool compounds to study its broader role and biology are considered.
Abstract: Despite the importance of members of the GPCR superfamily as targets of a broad range of effective medicines many GPCRs remain poorly characterised. GPR84 is an example. Expression of GPR84 is strongly up regulated in immune cells in a range of pro-inflammatory settings and clinical trials to treat idiopathic pulmonary fibrosis are currently ongoing using ligands with differing levels of selectivity and affinity as GPR84 antagonists. Although blockade of GPR84 may potentially prove effective also in diseases associated with inflammation of the lower gut there is emerging interest in defining if agonists of GPR84 might find utility in conditions in which regulation of metabolism or energy sensing is compromised. Here, we consider the physiological and pathological expression profile of GPR84 and, in the absence of direct structural information, recent developments and use of GPR84 pharmacological tool compounds to study its broader role and biology.

22 citations


Journal ArticleDOI
TL;DR: This study provides evidence that pharmacological targeting of lung FFA4, and possibly combined activation of F FA4 and FFA1, has in vivo efficacy and might have therapeutic value in the treatment of bronchoconstriction associated with inflammatory airway diseases such as asthma and COPD.
Abstract: Increased prevalence of inflammatory airway diseases including asthma and chronic obstructive pulmonary disease (COPD) together with inadequate disease control by current frontline treatments means that there is a need to define therapeutic targets for these conditions. Here, we investigate a member of the G protein–coupled receptor family, FFA4, that responds to free circulating fatty acids including dietary omega-3 fatty acids found in fish oils. We show that FFA4, although usually associated with metabolic responses linked with food intake, is expressed in the lung where it is coupled to Gq/11 signaling. Activation of FFA4 by drug-like agonists produced relaxation of murine airway smooth muscle mediated at least in part by the release of the prostaglandin E2 (PGE2) that subsequently acts on EP2 prostanoid receptors. In normal mice, activation of FFA4 resulted in a decrease in lung resistance. In acute and chronic ozone models of pollution-mediated inflammation and house dust mite and cigarette smoke–induced inflammatory disease, FFA4 agonists acted to reduce airway resistance, a response that was absent in mice lacking expression of FFA4. The expression profile of FFA4 in human lung was similar to that observed in mice, and the response to FFA4/FFA1 agonists similarly mediated human airway smooth muscle relaxation ex vivo. Our study provides evidence that pharmacological targeting of lung FFA4, and possibly combined activation of FFA4 and FFA1, has in vivo efficacy and might have therapeutic value in the treatment of bronchoconstriction associated with inflammatory airway diseases such as asthma and COPD.

15 citations


Journal ArticleDOI
TL;DR: It is demonstrated for the first time that FFA3 activation leads to calcium mobilization in murine dorsal root ganglia, and two representatives of an allosteric modulator series showed improved solubility and preserved potency.
Abstract: Free fatty acid receptor 3 (FFA3, previously GPR41) is activated by short-chain fatty acids, mediates health effects of the gut microbiota, and is a therapeutic target for metabolic and inflammatory diseases. The shortage of well-characterized tool compounds has however impeded progress. Herein, we report structure-activity relationship of an allosteric modulator series and characterization of physicochemical and pharmacokinetic properties of selected compounds, including previous and new tools. Two representatives, 57 (TUG-1907) and 63 (TUG-2015), showed improved solubility and preserved potency. Of these, 57, with EC50 = 145 nM and a solubility of 33 μM, showed high clearance in vivo but is a preferred tool in vitro. In contrast, 63, with EC50 = 162 nM and a solubility of 9 μM, showed lower clearance and seems better suited for in vivo studies. Using 57, we demonstrate for the first time that FFA3 activation leads to calcium mobilization in murine dorsal root ganglia.

11 citations


Journal ArticleDOI
25 Nov 2020-Nature
TL;DR: An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Abstract: An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5 citations


Posted ContentDOI
21 May 2020-bioRxiv
TL;DR: Evidence is provided that pharmacological targeting of lung FFA4, and possibly combined activation of F FA4 and FFA1, has in vivo efficacy that might have therapeutic value in the treatment of bronchoconstriction associated with inflammatory airway diseases such as asthma and COPD.
Abstract: Increased prevalence of inflammatory airway diseases including asthma and chronic obstructive pulmonary disease (COPD) together with a significant number of patients being inadequately controlled by current frontline treatments means that there is a need to define novel therapeutic targets for these conditions1. Here we investigate a member of the G protein-coupled receptor (GPCR) family, FFA4, which responds to free circulating fatty acids, including dietary omega-3 fatty acids found in fish oils2-4. Although usually associated with metabolic responses linked with food intake, we show that FFA4 is expressed in the lung where it is coupled to Gq/11-signalling. Activation of FFA4 by drug-like agonists produced relaxation of murine airway smooth muscle mediated, at least in part, by the release of the prostaglandin PGE2 that subsequently acts on EP2 prostanoid receptors. In normal mice, activation of FFA4 resulted in a decrease in lung resistance. Importantly, in acute and chronic ozone models of pollution-mediated inflammation, and in house-dust mite and cigarette smoke-induced inflammatory disease, FFA4 agonists acted to reduce airway resistance, whilst this response was absent in mice lacking expression of FFA4. The expression profile of FFA4 in human lung was very similar to that observed in mice and the response to FFA4/FFA1 agonists similarly mediated human airway smooth muscle relaxation. Hence, our study provides evidence that pharmacological targeting of lung FFA4, and possibly combined activation of FFA4 and FFA1, has in vivo efficacy that might have therapeutic value in the treatment of bronchoconstriction associated with inflammatory airway diseases such as asthma and COPD.

4 citations


Posted ContentDOI
13 Jan 2020-bioRxiv
TL;DR: These studies map mechanisms and signalling pathways by which each of FFA2 and FFA3 act to link the gut and the brain and provide both animal models and novel tool compounds to further explore this interface.
Abstract: The gut-brain axis allows bi-directional communication between the enteric and central nervous systems. Short chain fatty acids (SCFAs) generated by the gut microbiota are important regulators of this interface. However, defining mechanisms by which SCFAs do so has been challenging because, amongst various roles, they co-activate both of a pair of closely related and poorly characterized G protein-coupled receptors, FFA2 and FFA3. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) can provide an important approach in defining receptor-specific functions. By screening a library of carboxylate-containing small molecules we identified 4-methoxy-3-methyl-benzoic acid (MOMBA) as a specific agonist of a DREADD variant of FFA2 which is not activated by SCFAs. Using mice engineered to replace FFA2 with this FFA2-DREADD, whilst retaining FFA3 expression, combinations of MOMBA and the now FFA3 receptor selective SCFAs defined key, but distinct, roles of FFA2 and FFA3 in each of gut transit time, secretion of entero-endocrine hormones, and communication from the gut to each of autonomic and somatic sensory ganglion cells and the spinal cord. These studies map mechanisms and signalling pathways by which each of FFA2 and FFA3 act to link the gut and the brain and provide both animal models and novel tool compounds to further explore this interface.

4 citations