scispace - formally typeset
Search or ask a question

Showing papers by "Hubertus Fischer published in 2020"


Journal ArticleDOI
21 Feb 2020-Science
TL;DR: Ice core isotopic measurements of methane from the last deglaciation are presented, which is a partial analog for modern warming and show that methane emissions from old carbon reservoirs in response to deglacial warming were small and argue against similar methane emissions in responseto future warming.
Abstract: Permafrost and methane hydrates are large, climate-sensitive old carbon reservoirs that have the potential to emit large quantities of methane, a potent greenhouse gas, as the Earth continues to warm. We present ice core isotopic measurements of methane (Δ14C, δ13C, and δD) from the last deglaciation, which is a partial analog for modern warming. Our results show that methane emissions from old carbon reservoirs in response to deglacial warming were small (<19 teragrams of methane per year, 95% confidence interval) and argue against similar methane emissions in response to future warming. Our results also indicate that methane emissions from biomass burning in the pre-Industrial Holocene were 22 to 56 teragrams of methane per year (95% confidence interval), which is comparable to today.

52 citations


Journal ArticleDOI
TL;DR: In this paper, the authors apply ice core volcanic proxies and annual layer counting to identify large volcanic eruptions that have left a signature in both Greenland and Antarctica, and match sequences of volcanic events with bipolar distribution of sulfate, i.e. unique patterns of volcanic outbreaks separated by the same number of years at the two poles.
Abstract: . The last glacial period is characterized by a number of millennial climate events that have been identified in both Greenland and Antarctic ice cores and that are abrupt in Greenland climate records. The mechanisms governing this climate variability remain a puzzle that requires a precise synchronization of ice cores from the two hemispheres to be resolved. Previously, Greenland and Antarctic ice cores have been synchronized primarily via their common records of gas concentrations or isotopes from the trapped air and via cosmogenic isotopes measured on the ice. In this work, we apply ice core volcanic proxies and annual layer counting to identify large volcanic eruptions that have left a signature in both Greenland and Antarctica. Generally, no tephra is associated with those eruptions in the ice cores, so the source of the eruptions cannot be identified. Instead, we identify and match sequences of volcanic eruptions with bipolar distribution of sulfate, i.e. unique patterns of volcanic events separated by the same number of years at the two poles. Using this approach, we pinpoint 82 large bipolar volcanic eruptions throughout the second half of the last glacial period (12–60 ka). This improved ice core synchronization is applied to determine the bipolar phasing of abrupt climate change events at decadal-scale precision. In response to Greenland abrupt climatic transitions, we find a response in the Antarctic water isotope signals ( δ18O and deuterium excess) that is both more immediate and more abrupt than that found with previous gas-based interpolar synchronizations, providing additional support for our volcanic framework. On average, the Antarctic bipolar seesaw climate response lags the midpoint of Greenland abrupt δ18O transitions by 122±24 years. The time difference between Antarctic signals in deuterium excess and δ18O , which likewise informs the time needed to propagate the signal as described by the theory of the bipolar seesaw but is less sensitive to synchronization errors, suggests an Antarctic δ18O lag behind Greenland of 152±37 years. These estimates are shorter than the 200 years suggested by earlier gas-based synchronizations. As before, we find variations in the timing and duration between the response at different sites and for different events suggesting an interaction of oceanic and atmospheric teleconnection patterns as well as internal climate variability.

48 citations


Journal ArticleDOI
21 Aug 2020-Science
TL;DR: A record of atmospheric carbon dioxide concentrations retrieved from the European Project for Ice Coring in Antarctica Dome C ice core shows that pronounced carbon dioxide jumps occurred during both cold and warm periods between 330,000 and 450,000 years ago, revealing pervasive features of the carbon cycle that can occur during interglacial climate conditions.
Abstract: Pulse-like carbon dioxide release to the atmosphere on centennial time scales has only been identified for the most recent glacial and deglacial periods and is thought to be absent during warmer climate conditions. Here, we present a high-resolution carbon dioxide record from 330,000 to 450,000 years before present, revealing pronounced carbon dioxide jumps (CDJ) under cold and warm climate conditions. CDJ come in two varieties that we attribute to invigoration or weakening of the Atlantic meridional overturning circulation (AMOC) and associated northward and southward shifts of the intertropical convergence zone, respectively. We find that CDJ are pervasive features of the carbon cycle that can occur during interglacial climate conditions if land ice masses are sufficiently extended to be able to disturb the AMOC by freshwater input.

35 citations


Journal ArticleDOI
TL;DR: The last interglacial (129-116thousand years ago (ka)) represents one of the warmest climate intervals of the past 800,000 years and the most recent time when sea level was metres higher than today.
Abstract: The Last Interglacial (129–116 thousand years ago (ka)) represents one of the warmest climate intervals of the past 800,000 years and the most recent time when sea level was metres higher than today. However, the timing and magnitude of the peak warmth varies between reconstructions, and the relative importance of individual sources that contribute to the elevated sea level (mass gain versus seawater expansion) during the Last Interglacial remains uncertain. Here we present the first mean ocean temperature record for this interval from noble gas measurements in ice cores and constrain the thermal expansion contribution to sea level. Mean ocean temperature reached its maximum value of 1.1 ± 0.3 °C warmer-than-modern values at the end of the penultimate deglaciation at 129 ka, which resulted in 0.7 ± 0.3 m of thermosteric sea-level rise relative to present level. However, this maximum in ocean heat content was a transient feature; mean ocean temperature decreased in the first several thousand years of the interglacial and achieved a stable, comparable-to-modern value by ~127 ka. The synchroneity of the peak in mean ocean temperature with proxy records of abrupt transitions in the oceanic and atmospheric circulation suggests that the mean ocean temperature maximum is related to the accumulation of heat in the ocean interior during the preceding period of reduced overturning circulation. Rapid oceanic and atmospheric circulation shifts led to a transient peak in the mean temperature of the ocean at the start of the Last Interglacial, according to noble gas isotope records from an Antarctic ice core.

35 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe anomalies of up to 30-40ppb CH 4 that are only observed in dust-rich ( > ∼ 60-ng Ca/g ice), glacial-period ice measured with standard melt-refreeze methods.

23 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed that a runaway retreat of the George V coast grounding line and subsequent instability of the Wilkes Basin ice sheet would either leave a clear imprint on the water isotope composition in the Talos Dome region or prohibit a Talos dome ice core record from the Last Interglacial altogether.
Abstract: The response of the East Antarctic Ice Sheet to global warming represents a major source of uncertainty in sea level projections. Thinning of the East Antarctic George V and Sabrina Coast ice‐cover is currently taking place, and regional ice‐sheet instability episodes might have been triggered in past warm climates. However, the magnitude of ice retreat in the past can not yet be quantitatively derived from paleo‐proxy records alone. We propose that a runaway retreat of the George V coast grounding line and subsequent instability of the Wilkes Basin ice‐sheet would either leave a clear imprint on the water isotope composition in the Talos Dome region or prohibit a Talos Dome ice‐core record from the Last Interglacial altogether. Testing this hypothesis our ice sheet model simulations suggest, that Wilkes Basin ice‐sheet retreat remained relatively limited during the Last Interglacial and provide a constraint on Last Interglacial East Antarctic grounding line stability.

16 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the large increase in terrestrial N2O emissions over the past 21,000 years as reconstructed from ice-core isotopic data and presented in part 1 of this study.
Abstract: . Carbon–nitrogen (C–N) interactions regulate N availability for plant growth and for emissions of nitrous oxide ( N2O ) and the uptake of carbon dioxide. Future projections of these terrestrial greenhouse gas fluxes are strikingly divergent, leading to major uncertainties in projected global warming. Here we analyse the large increase in terrestrial N2O emissions over the past 21 000 years as reconstructed from ice-core isotopic data and presented in part 1 of this study. Remarkably, the increase occurred in two steps, each realized over decades and within a maximum of 2 centuries, at the onsets of the major deglacial Northern Hemisphere warming events. The data suggest a highly dynamic and responsive global N cycle. The increase may be explained by an increase in the flux of reactive N entering and leaving ecosystems or by an increase in N2O yield per unit N converted. We applied the LPX-Bern dynamic global vegetation model in deglacial simulations forced with Earth system model climate data to investigate N2O emission patterns, mechanisms, and C–N coupling. The N2O emission changes are mainly attributed to changes in temperature and precipitation and the loss of land due to sea-level rise. LPX-Bern simulates a deglacial increase in N2O emissions but underestimates the reconstructed increase by 47 %. Assuming time-independent N sources in the model to mimic progressive N limitation of plant growth results in a decrease in N2O emissions in contrast to the reconstruction. Our results appear consistent with suggestions of (a) biological controls on ecosystem N acquisition and (b) flexibility in the coupling of the C and N cycles during periods of rapid environmental change. A dominant uncertainty in the explanation of the reconstructed N2O emissions is the poorly known N2O yield per N lost through gaseous pathways and its sensitivity to soil conditions. The deglacial N2O record provides a constraint for future studies.

14 citations


Journal ArticleDOI
TL;DR: In this paper, a new high-resolution record of atmospheric CO2 during Marine Isotope Stage (MIS) 6 (190 to 135 ka) of the penultimate glacial period was reconstructed using new and previously published CO2 data from the EPICA Dome C ice core.
Abstract: . Using new and previously published CO2 data from the EPICA Dome C ice core (EDC), we reconstruct a new high-resolution record of atmospheric CO2 during Marine Isotope Stage (MIS) 6 (190 to 135 ka) the penultimate glacial period. Similar to the last glacial cycle, where high-resolution data already exists, our record shows that during longer North Atlantic (NA) stadials, millennial CO2 variations during MIS 6 are clearly coincident with the bipolar seesaw signal in the Antarctic temperature record. However, during one short stadial in the NA, atmospheric CO2 variation is small ( ∼5 ppm) and the relationship between temperature variations in EDC and atmospheric CO2 is unclear. The magnitude of CO2 increase during Carbon Dioxide Maxima (CDM) is closely related to the NA stadial duration in both MIS 6 and MIS 3 (60–27 ka). This observation implies that during the last two glacials the overall bipolar seesaw coupling of climate and atmospheric CO2 operated similarly. In addition, similar to the last glacial period, CDM during the earliest MIS 6 show different lags with respect to the corresponding abrupt CH4 rises, the latter reflecting rapid warming in the Northern Hemisphere (NH). During MIS 6i at around 181.5± 0.3 ka, CDM 6i lags the abrupt warming in the NH by only 240± 320 years. However, during CDM 6iv ( 171.1± 0.2 ka) and CDM 6iii ( 175.4± 0.4 ka) the lag is much longer: 1290± 540 years on average. We speculate that the size of this lag may be related to a larger expansion of carbon-rich, southern-sourced waters into the Northern Hemisphere in MIS 6, providing a larger carbon reservoir that requires more time to be depleted.

11 citations


Journal ArticleDOI
TL;DR: In this article, the FRIDGE droplet freezing assay was used to detect ice nucleating particles (INPs) from an ice core in Greenland, which dates back to the year 1370.
Abstract: . Ice nucleating particles (INPs) affect the microphysics in cloud and precipitation processes. Hence, they modulate the radiative properties of clouds. However, atmospheric INP concentrations of the past are basically unknown. Here, we present INP measurements from an ice core in Greenland, which dates back to the year 1370. In total 135 samples were analyzed with the FRIDGE droplet freezing assay in the temperature range from −14 °C to −35 °C. The sampling frequency was set to 1 in 10 years from 1370 to 1960. From 1960 to 1990 the frequency was increased to 1 sample per year. Additionally, a number of special events were probed, including volcanic episodes. The typical time coverage of a sample was on the order of a few months. Historical atmospheric INP concentrations were estimated with a conversion factor, which depends on the snow accumulation rate of the ice core, particle dry deposition velocity and the wet scavenging ratio. Typical atmospheric INP concentrations were on the order of 0.1 L−1 at −25 °C. The INP variability was found to be about 1–2 orders of magnitude. Yet, the short-term variability from samples over a seasonal cycle was considerably lower. INP concentrations were significantly correlated to chemical tracers derived from continuous flow analysis (CFA) and ion chromatography (IC) over a broad range of nucleation temperatures. The highest correlation coefficients were found for the particle concentration (dp > 1.2 μm). The correlation is higher for the seasonal samples, where INP concentrations follow a clear annual pattern, highlighting the importance of the annual dust input in Greenland from East Asian deserts during spring. Scanning electron microscopy (SEM) of single particles retrieved from selected samples found particles of soil origin to be the dominant fraction, verifying the significance of mineral dust particles as INPs. Overall, the concentrations compare reasonably well to present day INP concentrations, albeit they are on the lower side. However, we found that the INP concentration at medium supercooled temperatures differed before and after 1960. Average INP concentrations at −23 °C, −24 °C, −25 °C, −26 °C and −28 °C were significantly higher (and more variable) in the modern day period, which could indicate a potential anthropogenic impact or some post-coring contamination of the topmost, very porous firn.

8 citations


Posted ContentDOI
TL;DR: In this article, the authors compare the fitness of a model to real-world observations using passive Lagrangian tracers and show that simple heuristics of basal drag can lead to an overestimation of the vertical interior ice sheet flow especially over subglacial basins.
Abstract: . Ice Sheet Models are a powerful tool to project the evolution of the Greenland and Antarctic Ice Sheets, and thus their future contribution to global sea-level changes. Probing the fitness of ice-sheet models to reproduce ongoing and past changes of the Greenland and Antarctic ice cover is a fundamental part of every modelling effort. However, benchmarking ice-sheet model data against real-world observations is a non-trivial process, as observational data comes with spatio-temporal gaps in coverage. Here, we present a new approach to assess the ability of ice-sheet models which makes use of the internal layering of the Antarctic Ice Sheet. We simulate observed isochrone elevations within the Antarctic Ice Sheet via passive Lagrangian tracers, highlighting that a good fit of the model to two dimensional datasets does not guarantee a good match against the three dimensional architecture of the ice-sheet and thus correct evolution over time. We show, that paleoclimate forcing schemes commonly used to drive ice-sheet models work well in the interior of the Antarctic Ice Sheet and especially along ice divides, but fail towards the ice-sheet margin. The comparison to isochronal horizons attempted here reveals, that simple heuristics of basal drag can lead to an overestimation of the vertical interior ice sheet flow especially over subglacial basins. Our model-observation intercomparison approach opens a new avenue to the improvement and tuning of current ice-sheet models via a more rigid constraint on model parameterisations and climate forcing which will benefit model-based estimates of future and past ice-sheet changes.

6 citations


Journal ArticleDOI
TL;DR: In this paper, a high-precision dual-laser spectrometer for the simultaneous measurement of CH4, N2O, and CO2 concentrations, as well as δ13C(CO2).
Abstract: . The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Future ice core projects will aim to extend both the temporal coverage (extending the timescale to 1.5 Myr) and the temporal resolution of existing records. This implies a strongly limited sample availability, increasing demands on analytical accuracy and precision, and the need to reuse air samples extracted from ice cores for multiple gas analyses. To meet these requirements, we designed and developed a new analytical system that combines direct absorption laser spectroscopy in the mid-infrared (mid-IR) with a quantitative sublimation extraction method. Here, we focus on a high-precision dual-laser spectrometer for the simultaneous measurement of CH4 , N2O , and CO2 concentrations, as well as δ13C(CO2) . Flow-through experiments at 5 mbar gas pressure demonstrate an analytical precision (1 σ ) of 0.006 ppm for CO2 , 0.02 ‰ for δ13C(CO2) , 0.4 ppb for CH4 , and 0.1 ppb for N2O , obtained after an integration time of 100 s. Sample–standard repeatabilities (1 σ ) of discrete samples of 1 mL STP (Standard Temperature and Pressure) amount to 0.03 ppm, 2.2 ppb, 1 ppb, and 0.04 ‰ for CO2 , CH4 , N2O , and δ13C(CO2) , respectively. The key elements to achieve this performance are a custom-developed multipass absorption cell, custom-made high-performance data acquisition and laser driving electronics, and a robust calibration approach involving multiple reference gases. The assessment of the spectrometer capabilities in repeated measurement cycles of discrete air samples – mimicking the procedure for external samples such as air samples from ice cores – was found to fully meet our performance criteria for future ice core analysis. Finally, this non-consumptive method allows the reuse of the precious gas samples for further analysis, which creates new opportunities in ice core science.