scispace - formally typeset
Search or ask a question

Showing papers by "Janet K. Jansson published in 2015"


Journal ArticleDOI
14 May 2015-Nature
TL;DR: The combination of several molecular ‘omics’ approaches is used to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog.
Abstract: A multi-omics approach, integrating metagenomics, metatranscriptomics and metaproteomics, determines the phylogenetic composition of the microbial community and assesses its functional potential and activity along a thaw transition from intact permafrost to thermokast bog. The application of the various individual 'omics' tools to the study of microbial ecosystems has dramatically altered our view of their constituents and ecology over the past decade. Here Janet Jansson and colleagues develop an multi-omics approach, integrating metagenomics, metatranscriptomics and metaproteomics to analyse microbial gene expression in frozen soils that form part of the Alaska Peatland Experiment. The results show that the community shifts along a natural thaw gradient from permafrost to seasonally thawed active layer to thermokarst bog and the authors find that there is a transition in the potential for several biogeochemical cycles with thaw, including those for denitrification, nitrate reduction, iron reduction and methane oxidation. Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere1. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils2,3,4 and a rapid shift in functional gene composition during short-term thaw experiments3. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales5,6. Here we use the combination of several molecular ‘omics’ approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

400 citations


Journal ArticleDOI
30 Oct 2015-Science
TL;DR: The Unified Microbiome Initiative (UMI) as mentioned in this paper proposes an interdisciplinary approach to discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems, which can transform our understanding of the world and launch innovations in agriculture, energy, health, and environment.
Abstract: Despite their centrality to life on Earth, we know little about how microbes (1) interact with each other, their hosts, or their environment. Although DNA sequencing technologies have enabled a new view of the ubiquity and diversity of microorganisms, this has mainly yielded snapshots that shed limited light on microbial functions or community dynamics. Given that nearly every habitat and organism hosts a diverse constellation of microorganisms—its “microbiome”—such knowledge could transform our understanding of the world and launch innovations in agriculture, energy, health, the environment, and more (see the photo). We propose an interdisciplinary Unified Microbiome Initiative (UMI) to discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems. The impacts of oceans and soil microbes on atmospheric CO_2 are critical for understanding climate change (2). By manipulating interactions at the root-soil-microbe interface, we may reduce agricultural pesticide, fertilizer, and water use enrich marginal land and rehabilitate degraded soils. Microbes can degrade plant cell walls (for biofuels), and synthesize myriad small molecules for new bioproducts, including antibiotics (3). Restoring normal human microbial ecosystems can save lives [e.g., fecal microbiome transplantation for Clostridium difficile infections (4)]. Rational management of microbial communities in and around us has implications for asthma, diabetes, obesity, infectious diseases, psychiatric illnesses, and other afflictions (5, 6). The human microbiome is a target and a source for new drugs (7) and an essential tool for precision medicine (8).

180 citations


Journal ArticleDOI
TL;DR: Differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae, and plant-based and animal-based specialists showed a more clustered arrangement of their intestinal bacterial components.
Abstract: The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Bats with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae.

89 citations


Journal ArticleDOI
TL;DR: Seasonal variations in the bacterial community of active layer soil from Svalbard are studied by co-extracting DNA and RNA from 12 soil cores collected monthly over a year, illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.
Abstract: The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78 oN) by co-extracting DNA and RNA from twelve soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10 oC. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and e.g the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24 % in June) and phototrophic organisms (up to 48 % in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

83 citations


Journal ArticleDOI
TL;DR: It is concluded that redox conditions are the dominant force in shaping microbial communities in this landscape, and lactic acid concentration was the best, in combination with redox, for describing the microbial community.
Abstract: This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes).

47 citations


Journal ArticleDOI
TL;DR: The Collaborative Cross, a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, is used to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains.
Abstract: Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains. Body weight and rotarod performance varied widely across CC strains and were significantly negatively correlated. Genetic linkage analysis identified 14 loci that were associated with body weight. However, 45 loci affected rotarod performance, seven of which were also associated with body weight, suggesting a strong link at the genetic level. Lastly, we show that genes identified in this study overlap significantly with those related to neurological disorders and obesity found in human GWA studies. In conclusion, our results provide a genetic framework for studies of the connection between body weight, the central nervous system and behavior.

40 citations


Journal ArticleDOI
TL;DR: Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF.
Abstract: Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly more prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.

28 citations


Journal ArticleDOI
TL;DR: It is demonstrated that PCE degradation is dependent on some microbial community members for production of appropriate metabolites, while other members of the community compete for hydrogen in soil at low redox potentials.
Abstract: This study focused on the microbial ecology of tetrachloroethene (PCE) degradation to trichloroethene, cis-1,2-dichloroethene and vinyl chloride to evaluate the relationship between the microbial community and the potential accumulation or degradation of these toxic metabolites. Multiple soil microcosms supplied with different organic substrates were artificially contaminated with PCE. A thymidine analogue, bromodeoxyuridine (BrdU), was added to the microcosms and incorporated into the DNA of actively replicating cells. We compared the total and active bacterial communities during the 50-day incubations by using phylogenic microarrays and 454 pyrosequencing to identify microorganisms and functional genes associated with PCE degradation to ethene. By use of this integrative approach, both the key community members and the ecological functions concomitant with complete PCE degradation could be determined, including the presence and activity of microbial community members responsible for producing hydrogen and acetate, which are critical for Dehalococcoides-mediated PCE degradation. In addition, by correlation of chemical data and phylogenic microarray data, we identified several bacteria that could potentially oxidize hydrogen. These results demonstrate that PCE degradation is dependent on some microbial community members for production of appropriate metabolites, while other members of the community compete for hydrogen in soil at low redox potentials.

27 citations


Journal ArticleDOI
TL;DR: This study demonstrated that both chicory and ribwort inclusion in the diet of newly weaned pigs influenced the composition of the fecal microbiota and that digestion of specific dietary components was correlated with species composition ofThe microbiota.
Abstract: The purpose of this study was to investigate how inclusion of chicory forage or ribwort forage in a cereal-based diet influenced the fecal microbial community (microbiome) in newly weaned (35 days of age) piglets. The piglets were fed a cereal-based diet without (B) and with inclusion (80 and 160 g/kg air-dry forage) of vegetative shoots of chicory (C) and leaves of ribwort (R) forage in a 35-day growth trial. Fecal samples were collected at the start (D0), 17 (D17) and 35 (D35) days after weaning and profiles of the microbial consortia were generated using terminal restriction fragment length polymorphism (T-RFLP). 454-FLX pyrosequencing of 16S rRNA gene amplicons was used to analyze the microbial composition in a subset of the samples already analyzed with T-RFLP. The microbial clustering pattern was primarily dependent on age of the pigs, but diet effects could also be observed. Lactobacilli and enterobacteria were more abundant at D0, whereas the genera Streptococcus, Treponema, Clostridium, Clostridiaceae1 and Coprococcus were present in higher abundances at D35. Pigs fed ribwort had an increased abundance of sequences classified as Treponema and a reduction in lactobacilli. However, the abundance of Prevotellaceae increased with age in on both the chicory and the ribwort diet. Moreover, there were significant correlations between the abundance of Bacteroides and the digested amount of galactose, uronic acids and total non-starch polysaccharides, and between the abundance of Bacteroidales and the digested amount of xylose. This study demonstrated that both chicory and ribwort inclusion in the diet of newly weaned pigs influenced the composition of the fecal microbiota and that digestion of specific dietary components was correlated with species composition of the microbiota. Moreover, this study showed that the gut will be exposed to a dramatic shift in the microbial community structure several weeks after weaning.

17 citations


Journal ArticleDOI
TL;DR: The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.
Abstract: Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria, and nematodes. The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.

14 citations


Journal Article
TL;DR: These technical needs will provide the basis for advancing the largely descriptive studies of the microbiome to the theoretical and mechanistic understandings that will underpin the discipline of microbiome engineering.
Abstract: The microbiome presents great opportunities for understanding and improving the world around us and elucidating the interactions that compose it. The microbiome also poses tremendous challenges for mapping and manipulating the entangled networks of interactions among myriad diverse organisms. Here, we describe the opportunities, technical needs, and potential approaches to address these challenges, based on recent and upcoming advances in measurement and control at the nanoscale and beyond. These technical needs will provide the basis for advancing the largely descriptive studies of the microbiome to the theoretical and mechanistic understandings that will underpin the discipline of microbiome engineering. We anticipate that the new tools and methods developed will also be more broadly useful in environmental monitoring, medicine, forensics, and other areas.

Journal ArticleDOI
TL;DR: Paenibacillus polymyxa strain Mc5Re-14 revealed promising in vitro antagonistic activity against plant and opportunistic human pathogens and the 6.0-Mb draft genome reveals genes putatively involved in pathogen suppression and direct and indirect plant growth promotion.
Abstract: Paenibacillus polymyxa strain Mc5Re-14 was isolated from the inner root tissue of Matricaria chamomilla (German chamomile). Mc5Re-14 revealed promising in vitro antagonistic activity against plant and opportunistic human pathogens. The 6.0-Mb draft genome reveals genes putatively involved in pathogen suppression and direct and indirect plant growth promotion.

Journal ArticleDOI
TL;DR: The genome of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, is revealed.
Abstract: The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.