scispace - formally typeset
Search or ask a question

Showing papers by "Lloyd Knox published in 2012"


Journal ArticleDOI
TL;DR: In this paper, the authors used the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey.
Abstract: Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3 x R500, i.e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole radial range. Our measurement is fully consistent with previous Planck results on integrated SZ fluxes, further strengthening the agreement between SZ and X-ray measurements inside R500. Correcting for the effects of the Planck beam, we have calculated the corresponding pressure profiles. This new constraint from SZ measurements is consistent with the X-ray constraints from XMM-Newton in the region in which the profiles overlap (i.e., [0.1-1]R500), and is in fairly good agreement with theoretical predictions within the expected dispersion. At larger radii the average pressure profile is slightly flatter than most predictions from numerical simulations. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P0, c500, gamma, alpha, beta] = [6.41, 1.81, 0.31, 1.33, 4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts we reconstruct from our stacked pressure profile the gas mass fraction profile out to 3 x R500. Within the temperature driven uncertainties, our Planck constraints are compatible with the cosmic baryon fraction and expected gas fraction in halos.

337 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present the first three-frequency South Pole Telescope (SPT) cosmic microwave background (CMB) power spectra, and find strong evidence for nonlinear clustering.
Abstract: We present the first three-frequency South Pole Telescope (SPT) cosmic microwave background (CMB) power spectra. The band powers presented here cover angular scales 2000 < l < 9400 in frequency bands centered at 95, 150, and 220 GHz. At these frequencies and angular scales, a combination of the primary CMB anisotropy, thermal and kinetic Sunyaev-Zel'dovich (SZ) effects, radio galaxies, and cosmic infrared background (CIB) contributes to the signal. We combine Planck/HFI and SPT data at 220 GHz to constrain the amplitude and shape of the CIB power spectrum and find strong evidence for nonlinear clustering. We explore the SZ results using a variety of cosmological models for the CMB and CIB anisotropies and find them to be robust with one exception: allowing for spatial correlations between the thermal SZ effect and CIB significantly degrades the SZ constraints. Neglecting this potential correlation, we find the thermal SZ power at 150 GHz and l = 3000 to be 3.65 ± 0.69 μK^2, and set an upper limit on the kinetic SZ power to be less than 2.8 μK^2 at 95% confidence. When a correlation between the thermal SZ and CIB is allowed, we constrain a linear combination of thermal and kinetic SZ power: D^(tSZ)_(3000) + 0.5D^(kSZ)_(3000) = 4.60 ± 0.63 μK^2, consistent with earlier measurements. We use the measured thermal SZ power and an analytic, thermal SZ model calibrated with simulations to determine σ_8 = 0.807 ± 0.016. Modeling uncertainties involving the astrophysics of the intracluster medium rather than the statistical uncertainty in the measured band powers are the dominant source of uncertainty on σ_8. We also place an upper limit on the kinetic SZ power produced by patchy reionization; a companion paper uses these limits to constrain the reionization history of the universe.

319 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explore extensions to the Lambda$CDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along with data from WMAP7 and measurements of $H_0$ and BAO.
Abstract: We explore extensions to the $\Lambda$CDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along with data from WMAP7 and measurements of $H_0$ and BAO. We check for consistency within $\Lambda$CDM between these datasets, and find some tension. The CMB alone gives weak support to physics beyond $\Lambda$CDM, due to a slight trend relative to $\Lambda$CDM of decreasing power towards smaller angular scales. While it may be due to statistical fluctuation, this trend could also be explained by several extensions. We consider running index (nrun), as well as two extensions that modify the damping tail power (the primordial helium abundance $Y_p$ and the effective number of neutrino species $N_{\rm eff}$) and one that modifies the large-scale power due to the ISW effect (the sum of neutrino masses $\sum m_ u$). These extensions have similar observational consequences and are partially degenerate when considered simultaneously. Of the 6 one-parameter extensions considered, we find CMB to have the largest preference for nrun with -0.046 0 from CMB+BAO+$H_0$+$\rm{SPT_{CL}}$. The median value is $(0.32\pm0.11)$ eV, a factor of six above the lower bound set by neutrino oscillation observations. ... [abridged]

286 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the South Pole Telescope data from 2008 and 2009 to detect the non-Gaussian signature in the cosmic microwave background (CMB) produced by gravitational lensing and to measure the power spectrum of the projected gravitational potential.
Abstract: We use South Pole Telescope data from 2008 and 2009 to detect the non-Gaussian signature in the cosmic microwave background (CMB) produced by gravitational lensing and to measure the power spectrum of the projected gravitational potential. We constrain the ratio of the measured amplitude of the lensing signal to that expected in a fiducial ΛCDM cosmological model to be 0.86 ± 0.16, with no lensing disfavored at 6.3σ. Marginalizing over ΛCDM cosmological models allowed by the Wilkinson Microwave Anisotropy Probe (WMAP7) results in a measurement of A_lens = 0.90 ± 0.19, indicating that the amplitude of matter fluctuations over the redshift range 0.5 ≲ z ≲ 5 probed by CMB lensing is in good agreement with predictions. We present the results of several consistency checks. These include a clear detection of the lensing signature in CMB maps filtered to have no overlap in Fourier space, as well as a "curl" diagnostic that is consistent with the signal expected for ΛCDM. We perform a detailed study of bias in the measurement due to noise, foregrounds, and other effects and determine that these contributions are relatively small compared to the statistical uncertainty in the measurement. We combine this lensing measurement with results from WMAP7 to improve constraints on cosmological parameters when compared to those from WMAP7 alone: we find a factor of 3.9 improvement in the measurement of the spatial curvature of the universe, Ω_k = –0.0014 ± 0.0172; a 10% improvement in the amplitude of matter fluctuations within ΛCDM, σ_8 = 0.810 ± 0.026; and a 5% improvement in the dark energy equation of state, w = –1.04 ± 0.40. When compared with the measurement of w provided by the combination of WMAP7 and external constraints on the Hubble parameter, the addition of the lensing data improves the measurement of w by 15% to give w = –1.087 ± 0.096.

279 citations


ReportDOI
01 Nov 2012
TL;DR: The LSST Dark Energy Science Collaboration (DESC) as discussed by the authors is an analytical framework for dark energy and related topics in fundamental physics with data from the Large Synoptic Survey Telescope (LSST).
Abstract: This white paper describes the LSST Dark Energy Science Collaboration (DESC), whose goal is the study of dark energy and related topics in fundamental physics with data from the Large Synoptic Survey Telescope (LSST). It provides an overview of dark energy science and describes the current and anticipated state of the field. It makes the case for the DESC by laying out a robust analytical framework for dark energy science that has been defined by its members and the comprehensive three-year work plan they have developed for implementing that framework. The analysis working groups cover five key probes of dark energy: weak lensing, large scale structure, galaxy clusters, Type Ia supernovae, and strong lensing. The computing working groups span cosmological simulations, galaxy catalogs, photon simulations and a systematic software and computational framework for LSST dark energy data analysis. The technical working groups make the connection between dark energy science and the LSST system. The working groups have close linkages, especially through the use of the photon simulations to study the impact of instrument design and survey strategy on analysis methodology and cosmological parameter estimation. The white paper describes several high priority tasks identified by each of the 16 working groups. Over the next three years these tasks will help prepare for LSST analysis, make synergistic connections with ongoing cosmological surveys and provide the dark energy community with state of the art analysis tools. Members of the community are invited to join the LSST DESC, according to the membership policies described in the white paper. Applications to sign up for associate membership may be made by submitting the Web form at http://www.slac.stanford.edu/exp/lsst/desc/signup.html with a short statement of the work they wish to pursue that is relevant to the LSST DESC.

245 citations


Journal ArticleDOI
Michael McDonald1, Matthew B. Bayliss2, Bradford Benson3, Ryan J. Foley2, Jonathan Ruel2, Peter Sullivan1, Sylvain Veilleux4, Sylvain Veilleux5, K. A. Aird3, M. L. N. Ashby2, Marshall W. Bautz1, G. Bazin6, Lindsey Bleem3, Mark Brodwin7, John E. Carlstrom, C. L. Chang8, C. L. Chang3, H. M. Cho9, Alejandro Clocchiatti10, T. M. Crawford3, A. T. Crites3, T. de Haan11, Shantanu Desai6, Matt Dobbs11, J. P. Dudley11, Eiichi Egami12, William R. Forman2, Gordon P. Garmire13, Elizabeth George14, Michael D. Gladders3, Anthony H. Gonzalez15, N. W. Halverson16, N. L. Harrington14, F. W. High3, Gilbert Holder11, W. L. Holzapfel14, S. Hoover3, J. D. Hrubes3, C. Jones2, Marshall Joy17, Ryan Keisler3, Lloyd Knox18, Adrian T. Lee13, Adrian T. Lee19, E. M. Leitch3, Jiayi Liu6, M. Lueker13, M. Lueker20, D. Luong-Van3, Adam Mantz3, Daniel P. Marrone12, Jeff McMahon3, Jeff McMahon21, J. Mehl3, S. S. Meyer3, Eric D. Miller1, L. M. Mocanu3, Joseph J. Mohr22, T. E. Montroy23, S. S. Murray2, T. Natoli3, Stephen Padin3, Stephen Padin20, T. Plagge3, C. Pryke24, T. D. Rawle12, Christian L. Reichardt14, Armin Rest25, M. Rex12, J. E. Ruhl23, Benjamin Saliwanchik23, A. Saro6, J. T. Sayre23, K. K. Schaffer3, K. K. Schaffer26, L. Shaw27, L. Shaw11, Erik Shirokoff19, Erik Shirokoff14, Robert A. Simcoe1, J. Song21, Helmuth Spieler19, B. Stalder2, Z. K. Staniszewski23, Antony A. Stark2, K. T. Story3, Christopher W. Stubbs2, R. Šuhada6, A. van Engelen11, K. Vanderlinde11, Joaquin Vieira20, Joaquin Vieira3, Alexey Vikhlinin2, R. Williamson3, Oliver Zahn14, Oliver Zahn19, A. Zenteno6 
16 Aug 2012-Nature
TL;DR: An exceptionally luminous galaxy cluster that hosts an extremely strong cooling flow and a large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.
Abstract: X-ray, optical and infrared observations reveal a very high rate of star formation in the core of an extremely luminous galaxy cluster; this starburst seems to be triggered by a cooling flow of the dense intracluster plasma. Theory predicts that the hot intracluster plasma in the cores of some galaxy clusters is dense enough to cool radiatively during the cluster's lifetime. This should lead to continuous 'cooling flows' of gas sinking towards the cluster centre, yet until now no substantial cooling flow had been observed. New optical and X-ray observations of the galaxy cluster SPT-CLJ2344-424316 at z = 0.596 reveal it to be exceptionally luminous, with a remarkably strong cooling flow equivalent to more than 3,000 solar masses per year. The central galaxy of the cluster appears to be experiencing a massive starburst, which suggests that the feedback source thought to be responsible for preventing runaway cooling in nearby cool-core clusters is not yet established in this cluster. In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster’s lifetime1,2,3, leading to continuous ‘cooling flows’ of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates4,5 and cool gas masses6 for these ‘cool-core’ clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow7,8,9,10. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 1045 erg s−1) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

207 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the South Pole Telescope (SPT) data to infer the evolution of the ionized fraction, x-bar_(e), and showed that the ionization fraction evolved relatively rapidly.
Abstract: The epoch of reionization is a milestone of cosmological structure formation, marking the birth of the first objects massive enough to yield large numbers of ionizing photons. However, the mechanism and timescale of reionization remain largely unknown. Measurements of the cosmic microwave background (CMB) Doppler effect from ionizing bubbles embedded in large-scale velocity streams—known as the patchy kinetic Sunyaev-Zel'dovich (kSZ) effect—can be used to constrain the duration of reionization. When combined with large-scale CMB polarization measurements, the evolution of the ionized fraction, x-bar_(e), can be inferred. Using new multi-frequency data from the South Pole Telescope (SPT), we show that the ionized fraction evolved relatively rapidly. For our basic foreground model, we find the kSZ power sourced by reionization at l = 3000 to be D^(patchy)_3000 ≤ 2.1 μK^2 at 95% confidence. Using reionization simulations, we translate this to a limit on the duration of reionization of Δz≡z_(x-bar)_e=0.20 - z_(x-bar)_e=0.99≤4.4 (95% confidence). We find that this constraint depends on assumptions about the angular correlation between the thermal SZ power and the cosmic infrared background (CIB). Introducing the degree of correlation as a free parameter, we find that the limit on kSZ power weakens to D^(patchy)_3000 ≤ 4.9 μK^2, implying Δz ≤ 7.9 (95% confidence). We combine the SPT constraint on the duration of reionization with the Wilkinson Microwave Anisotropy Probe measurement of the integrated optical depth to probe the cosmic ionization history. We find that reionization ended with 95% confidence at z > 7.2 under the assumption of no tSZ-CIB correlation, and z > 5.8 when correlations are allowed. Improved constraints from the full SPT data set in conjunction with upcoming Herschel and Planck data should detect extended reionization at >95% confidence provided Δz ≥ 2. These CMB observations complement other observational probes of the epoch of reionization such as the redshifted 21 cm line and narrowband surveys for Lyα-emitting galaxies.

184 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify and characterize the emission from the Galactic "haze" at microwave wavelengths, which is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude.
Abstract: Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic "haze" at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the microwave haze morphology is consistent with that of the Fermi gamma-ray "haze" or "bubbles," indicating that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-ray acceleration in the centre of our Galaxy is implied.

133 citations


Journal ArticleDOI
TL;DR: In this paper, the authors use the Planck data to search for signatures of a fraction of the missing baryons between pairs of galaxy clusters, which are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect).
Abstract: About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray maps of these pairs. After having modelled and subtracted the tSZ effect and X-ray emission for each cluster in the pair we study the residuals on both the SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.

114 citations


Journal ArticleDOI
TL;DR: In this article, the spectral energy distribution (SED) of the rare, extremely bright (_( 1.4 mm) > 15 mJy), dust-dominated millimeter-selected galaxies recently discovered by the South Pole Telescope was modeled using a simple modified blackbody.
Abstract: We present APEX SABOCA 350 μm and LABOCA 870 μm observations of 11 representative examples of the rare, extremely bright (_( 1.4 mm) > 15 mJy), dust-dominated millimeter-selected galaxies recently discovered by the South Pole Telescope. All 11 sources are robustly detected with LABOCA with 40 mJy 3σ, with the detections or upper limits providing a key constraint on the shape of the spectral energy distribution (SED) near its peak. We model the SEDs of these galaxies using a simple modified blackbody and perform the same analysis on samples of SMGs of known redshift from the literature. These calibration samples inform the distribution of dust temperature for similar SMG populations, and this dust temperature prior allows us to derive photometric redshift estimates and far-infrared luminosities for the sources. We find a median redshift of z = 3.0, higher than the z = 2.2 inferred for the normal SMG population. We also derive the apparent size of the sources from the temperature and apparent luminosity, finding them to appear larger than our unlensed calibration sample, which supports the idea that these sources are gravitationally magnified by massive structures along the line of sight.

93 citations


Journal ArticleDOI
TL;DR: In this article, a model that associates star-forming galaxies with dark matter haloes and their subhaloes was developed based on a parametrized relation between the dust-processed infrared luminosity and (sub)halo mass.
Abstract: The power spectrum of cosmic infrared background (CIB) anisotropies is sensitive to the connection between star formation and dark matter haloes over the entire cosmic star formation history. Here we develop a model that associates star-forming galaxies with dark matter haloes and their subhaloes. The model is based on a parametrized relation between the dust-processed infrared luminosity and (sub)halo mass. By adjusting three free parameters, we attempt to simultaneously fit the four frequency bands of the Planck measurement of the CIB anisotropy power spectrum. To fit the data, we find that the star formation efficiency must peak on a halo mass scale of ≈5 × 1012 M⊙ and the infrared luminosity per unit mass must increase rapidly with redshift. By comparing our predictions with a well-calibrated phenomenological model for shot noise, and with a direct observation of source counts, we show that the mean duty cycle of the underlying infrared sources must be near unity, indicating that the CIB is dominated by long-lived quiescent star formation, rather than intermittent short ‘starbursts’. Despite the improved flexibility of our model, the best simultaneous fit to all four Planck channels remains relatively poor. We discuss possible further extensions to alleviate the remaining tension with the data. Our model presents a theoretical framework for a future joint analysis of both background anisotropy and source count measurements.

Journal ArticleDOI
TL;DR: In this article, the authors present further results from the ongoing XMM-Newton validation follow-up of Planck cluster candidates, detailing X-ray observations of eleven candidates detected at a signal-to-noise ratio of 4.5 < S/N < 5.3 in the same 10-month survey maps used in the construction of the Early SZ sample.
Abstract: We present further results from the ongoing XMM-Newton validation follow-up of Planck cluster candidates, detailing X-ray observations of eleven candidates detected at a signal-to-noise ratio of 4.5 < S/N < 5.3 in the same 10-month survey maps used in the construction of the Early SZ sample. The sample was selected in order to test internal SZ quality flags, and the pertinence of these flags is discussed in light of the validation results. Ten of the candidates are found to be bona fide clusters lying below the RASS flux limit. Redshift estimates are available for all confirmed systems via X-ray Fe-line spectroscopy. They lie in the redshift range 0.19 < z < 0.94, demonstrating Planck's capability to detect clusters up to high z. The X-ray properties of the new clusters appear to be similar to previous new detections by Planck at lower z and higher SZ flux: the majority are X-ray underluminous for their mass, estimated using YX as mass proxy, and many have a disturbed morphology. We find tentative indication for Malmquist bias in the YSZ-YX relation, with a turnover at YSZ ~ 4 × 10-4 arcmin2. We present additional new optical redshift determinations with ENO and ESO telescopes of candidates previously confirmed with XMM-Newton. The X-ray and optical redshifts for a total of 20 clusters are found to be in excellent agreement. We also show that useful lower limits can be put on cluster redshifts using X-ray data only via the use of the YX vs. YSZ and X-ray flux FX vs. YSZ relations.

Journal ArticleDOI
TL;DR: In this article, the spectral energy distribution (SED) of the rare, extremely bright (S_1.4mm > 15mJy), dust-dominated millimeter-selected galaxies recently discovered by the South Pole Telescope (SPT) was modeled using a simple modified blackbody.
Abstract: We present APEX SABOCA 350micron and LABOCA 870micron observations of 11 representative examples of the rare, extremely bright (S_1.4mm > 15mJy), dust-dominated millimeter-selected galaxies recently discovered by the South Pole Telescope (SPT). All 11 sources are robustly detected with LABOCA with 40 3sigma, with the detections or upper limits providing a key constraint on the shape of the spectral energy distribution (SED) near its peak. We model the SEDs of these galaxies using a simple modified blackbody and perform the same analysis on samples of SMGs of known redshift from the literature. These calibration samples inform the distribution of dust temperature for similar SMG populations, and this dust temperature prior allows us to derive photometric redshift estimates and far infrared luminosities for the sources. We find a median redshift of = 3.0, higher than the = 2.2 inferred for the normal SMG population. We also derive the apparent size of the sources from the temperature and apparent luminosity, finding them to appear larger than our unlensed calibration sample, which supports the idea that these sources are gravitationally magnified by massive structures along the line of sight.

Journal ArticleDOI
TL;DR: In this paper, the authors used the Planck Early Catalogue (ERCSC) at 100 to 857 GHz to estimate the number of synchrotron and dust-dominated sources.
Abstract: (abridged for arXiv) We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources -- infrared and radio sources -- from the Planck Early Catalogue (ERCSC) at 100 to 857GHz. Our sample contains, after the 80% completeness cut, between 122 and 452 and sources, with flux densities above 0.3 and 1.9Jy at 100 and 857GHz, over about 31 to 40% of the sky. Using Planck HFI, all the sources have been classified as either dust-dominated or synchrotron-dominated on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353GHz; at 353GHz or higher (or 217GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (earlier Planck, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies. We derive the multi-frequency Euclidean level and compare it to WMAP, Spitzer and IRAS results. The submillimetre number counts are not well reproduced by current evolution models of dusty galaxies, whereas the millimetre part appears reasonably well fitted by the most recent model for synchrotron-dominated sources. Finally we provide estimates of the local luminosity density of dusty galaxies, providing the first such measurements at 545 and 857GHz.

Journal ArticleDOI
TL;DR: In this article, the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates are presented, with 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey.
Abstract: We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. 14 new clusters were detected by XMM, including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6 clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We discuss our results in the context of the full XMM validation programme, in which 51 new clusters have been detected. This includes 4 double and 2 triple systems, some of which are chance projections on the sky of clusters at different z. We find that association with a RASS-BSC source is a robust indicator of the reliability of a candidate, whereas association with a FSC source does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4 arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this level. The corresponding mass threshold depends on z. Systems with M500 > 5 10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the YX-Y500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. (abridged)

Journal ArticleDOI
TL;DR: In this article, a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey is presented.
Abstract: We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. This measurement is made from observations of 2540 deg$^2$ of sky with arcminute resolution at $150\,$GHz, and improves upon previous measurements using the SPT by tripling the sky area. We report CMB temperature anisotropy power over the multipole range $650<\ell<3000$. We fit the SPT bandpowers, combined with the seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) data, with a six-parameter LCDM cosmological model and find that the two datasets are consistent and well fit by the model. Adding SPT measurements significantly improves LCDM parameter constraints; in particular, the constraint on $\theta_s$ tightens by a factor of 2.7. The impact of gravitational lensing is detected at $8.1\, \sigma$, the most significant detection to date. This sensitivity of the SPT+WMAP7 data to lensing by large-scale structure at low redshifts allows us to constrain the mean curvature of the observable universe with CMB data alone to be $\Omega_k=-0.003^{+0.014}_{-0.018}$. Using the SPT+WMAP7 data, we measure the spectral index of scalar fluctuations to be $n_s=0.9623 \pm 0.0097$ in the LCDM model, a $3.9\,\sigma$ preference for a scale-dependent spectrum with $n_s<1$. The SPT measurement of the CMB damping tail helps break the degeneracy that exists between the tensor-to-scalar ratio $r$ and $n_s$ in large-scale CMB measurements, leading to an upper limit of $r<0.18$ (95%,C.L.) in the LCDM+$r$ model. Adding low-redshift measurements of the Hubble constant ($H_0$) and the baryon acoustic oscillation (BAO) feature to the SPT+WMAP7 data leads to further improvements. The combination of SPT+WMAP7+$H_0$+BAO constrains $n_s=0.9538 \pm 0.0081$ in the LCDM model, a $5.7\,\sigma$ detection of $n_s < 1$, ... [abridged]

Journal ArticleDOI
TL;DR: In this paper, the authors developed a phenomenological parameterized model of the contributions to intensity and polarization maps at millimeter wavelengths from external galaxies and Sunyaev-Zeldovich effects.
Abstract: Using the latest physical modeling and constrained by the most recent data, we develop a phenomenological parameterized model of the contributions to intensity and polarization maps at millimeter wavelengths from external galaxies and Sunyaev-Zeldovich effects We find such modeling to be necessary for estimation of cosmological parameters from Planck data For example, ignoring the clustering of the infrared background would result in a bias in n_s of 7σ in the context of an eight-parameter cosmological model We show that the simultaneous marginalization over a full foreground model can eliminate such biases, while increasing the statistical uncertainty in cosmological parameters by less than 20% The small increases in uncertainty can be significantly reduced with the inclusion of higher-resolution ground-based data The multi-frequency analysis we employ involves modeling 46 total power spectra and marginalization over 17 foreground parameters We show that we can also reduce the data to a best estimate of the cosmic microwave background power spectra, with just two principal components (with constrained amplitudes) describing residual foreground contamination

Journal ArticleDOI
TL;DR: In this article, the results from a deep XMM-Newton re-observation are presented, showing that the three clumps are likely part of the same supercluster structure.
Abstract: The survey of galaxy clusters performed by Planck through the Sunyaev-Zeldovich effect has already discovered many interesting objects, thanks to the whole coverage of the sky. One of the SZ candidates detected in the early months of the mission near to the signal to noise threshold, PLCKG214.6+37.0, was later revealed by XMM-Newton to be a triple system of galaxy clusters. We have further investigated this puzzling system with a multi-wavelength approach and we present here the results from a deep XMM-Newton re-observation. The characterisation of the physical properties of the three components has allowed us to build a template model to extract the total SZ signal of this system with Planck data. We partly reconciled the discrepancy between the expected SZ signal from X-rays and the observed one, which are now consistent at less than 1.2 sigma. We measured the redshift of the three components with the iron lines in the X-ray spectrum, and confirmed that the three clumps are likely part of the same supercluster structure. The analysis of the dynamical state of the three components, as well as the absence of detectable excess X-ray emission, suggest that we are witnessing the formation of a massive cluster at an early phase of interaction.

Journal ArticleDOI
TL;DR: In this article, the authors used the South Pole Telescope data from 2008 and 2009 to detect the non-Gaussian signature in the cosmic microwave background (CMB) produced by gravitational lensing and to measure the power spectrum of the projected gravitational potential.
Abstract: We use South Pole Telescope data from 2008 and 2009 to detect the non-Gaussian signature in the cosmic microwave background (CMB) produced by gravitational lensing and to measure the power spectrum of the projected gravitational potential. We constrain the ratio of the measured amplitude of the lensing signal to that expected in a fiducial LCDM cosmological model to be 0.86 +/- 0.16, with no lensing disfavored at 6.3 sigma. Marginalizing over LCDM cosmological models allowed by the WMAP7 results in a measurement of A_lens=0.90+/-0.19, indicating that the amplitude of matter fluctuations over the redshift range 0.5 <~ z <~ 5 probed by CMB lensing is in good agreement with predictions. We present the results of several consistency checks. These include a clear detection of the lensing signature in CMB maps filtered to have no overlap in Fourier space, as well as a "curl" diagnostic that is consistent with the signal expected for LCDM. We perform a detailed study of bias in the measurement due to noise, foregrounds, and other effects and determine that these contributions are relatively small compared to the statistical uncertainty in the measurement. We combine this lensing measurement with results from WMAP7 to improve constraints on cosmological parameters when compared to those from WMAP7 alone: we find a factor of 3.9 improvement in the measurement of the spatial curvature of the Universe, Omega_k=-0.0014+/-0.0172; a 10% improvement in the amplitude of matter fluctuations within LCDM, sigma_8=0.810+/ 0.026; and a 5% improvement in the dark energy equation of state, w=-1.04+/-0.40. When compared with the measurement of w provided by the combination of WMAP7 and external constraints on the Hubble parameter, the addition of the lensing data improve the measurement of w by 15% to give w=-1.087+/-0.096.