scispace - formally typeset
Search or ask a question

Showing papers by "Lynda Chin published in 2017"


Journal ArticleDOI
15 Jun 2017-Cell
TL;DR: Integrative molecular HCC subtyping incorporating unsupervised clustering of five data platforms identified three subtypes, one of which was associated with poorer prognosis in three HCC cohorts and development of a p53 target gene expression signature correlating with poor survival was enabled.

1,623 citations


Journal ArticleDOI
TL;DR: An integrated multi-platform analysis of 150 pancreatic ductal adenocarcinoma specimens reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine.

1,259 citations


Journal ArticleDOI
02 Nov 2017-Cell
TL;DR: This large-scale analysis of 206 adult soft tissue sarcomas reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining Sarcoma therapy and relationships to other cancer types.

684 citations


Journal ArticleDOI
A. Gordon Robertson1, Juliann Shih2, Juliann Shih3, Christina Yau4  +170 moreInstitutions (23)
TL;DR: Within D3-UM, EIF1AX- and SRSF2/SF3B1-mutant tumors have distinct somatic copy number alterations and DNA methylation profiles, providing insight into the biology of these low- versus intermediate-risk clinical mutation subtypes.

560 citations


Journal ArticleDOI
TL;DR: A substantial fraction of cancers showed high mTOR pathway activity without an associated canonical genetic or genomic alteration, including cancers harboring IDH1 or VHL mutations, suggesting multiple mechanisms for pathway activation.

404 citations


Journal ArticleDOI
TL;DR: The authors emphasize the importance of acquiring biopsies from more than one tumor site in order to best tailor therapies to the features of metastatic cancer, and have key translational implications in the age of precision medicine.
Abstract: Appreciation for genomic and immune heterogeneity in cancer has grown though the relationship of these factors to treatment response has not been thoroughly elucidated. To better understand this, we studied a large cohort of melanoma patients treated with targeted therapy or immune checkpoint blockade (n = 60). Heterogeneity in therapeutic responses via radiologic assessment was observed in the majority of patients. Synchronous melanoma metastases were analyzed via deep genomic and immune profiling, and revealed substantial genomic and immune heterogeneity in all patients studied, with considerable diversity in T cell frequency, and few shared T cell clones (<8% on average) across the cohort. Variables related to treatment response were identified via these approaches and through novel radiomic assessment. These data yield insight into differential therapeutic responses to targeted therapy and immune checkpoint blockade in melanoma, and have key translational implications in the age of precision medicine.

116 citations



Journal ArticleDOI
TL;DR: Restoration of acetylation levels on deacetylated loci by histone de acetylase (HDAC) inhibitors selectively blocked excessive proliferation in tumorigenic cells and human melanoma cells, suggesting functional roles of observed chromatin state transitions in driving hyperproliferative phenotype.

81 citations


Journal ArticleDOI
TL;DR: This study identified two mechanistic subtypes of BRAFV600 melanoma that inform new cancer cell biology and offer new therapeutic opportunities and identified robust biomarkers that can detect these subtypes in patient samples and predict clinical outcome.
Abstract: Genomic diversity among melanoma tumors limits durable control with conventional and targeted therapies. Nevertheless, pathologic activation of the ERK1/2 pathway is a linchpin tumorigenic mechanism associated with the majority of primary and recurrent disease. Therefore, we sought to identify therapeutic targets that are selectively required for tumorigenicity in the presence of pathologic ERK1/2 signaling. By integration of multigenome chemical and genetic screens, recurrent architectural variants in melanoma tumor genomes, and patient outcome data, we identified two mechanistic subtypes of BRAFV600 melanoma that inform new cancer cell biology and offer new therapeutic opportunities. Subtype membership defines sensitivity to clinical MEK inhibitors versus TBK1/IKBKe inhibitors. Importantly, subtype membership can be predicted using a robust quantitative five-feature genetic biomarker. This biomarker, and the mechanistic relationships linked to it, can identify a cohort of best responders to clinical MEK inhibitors and identify a cohort of TBK1/IKBKe inhibitor-sensitive disease among nonresponders to current targeted therapy.Significance: This study identified two mechanistic subtypes of melanoma: (1) the best responders to clinical BRAF/MEK inhibitors (25%) and (2) nonresponders due to primary resistance mechanisms (9.9%). We identified robust biomarkers that can detect these subtypes in patient samples and predict clinical outcome. TBK1/IKBKe inhibitors were selectively toxic to drug-resistant melanoma. Cancer Discov; 7(8); 832-51. ©2017 AACR.See related commentary by Jenkins and Barbie, p. 799This article is highlighted in the In This Issue feature, p. 783.

48 citations


Journal ArticleDOI
TL;DR: It is established that proliferating cell nuclear antigen-associated factor (PAF) depletion profoundly reduces GSC frequency and tumorigenicity, in part, by down-regulating DNA replication and pyrimidine metabolism.
Abstract: An integrated genomic and functional analysis to elucidate DNA damage signaling factors promoting self-renewal of glioma stem cells (GSCs) identified proliferating cell nuclear antigen (PCNA)-associated factor (PAF) up-regulation in glioblastoma. PAF is preferentially overexpressed in GSCs. Its depletion impairs maintenance of self-renewal without promoting differentiation and reduces tumor-initiating cell frequency. Combined transcriptomic and metabolomic analyses revealed that PAF supports GSC maintenance, in part, by influencing DNA replication and pyrimidine metabolism pathways. PAF interacts with PCNA and regulates PCNA-associated DNA translesion synthesis (TLS); consequently, PAF depletion in combination with radiation generated fewer tumorspheres compared with radiation alone. Correspondingly, pharmacological impairment of DNA replication and TLS phenocopied the effect of PAF depletion in compromising GSC self-renewal and radioresistance, providing preclinical proof of principle that combined TLS inhibition and radiation therapy may be a viable therapeutic option in the treatment of glioblastoma multiforme (GBM).

38 citations


Journal ArticleDOI
TL;DR: Assessment of tumor initiation and therapy resistance bottlenecks in mouse models of melanoma, with or without genomic instability, demonstrates how different selection pressures can interact with genomic instability to impact tumor evolution.