scispace - formally typeset
Search or ask a question

Showing papers by "Martin von Bergen published in 2015"


Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: The discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers, and the genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation.
Abstract: Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.

1,648 citations


Journal ArticleDOI
06 Aug 2015-Nature
TL;DR: The aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis is reported using cyanate as the sole source of energy and reductant; to the authors' knowledge, the first organism known to do so and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment.
Abstract: The ammonia-oxidizing archaeon Nitrososphaera gargensis can utilize cyanate as the only source of energy for growth due to the presence of a cyanase enzyme, and cyanase-encoding nitrite-oxidizing bacteria can work together with cyanase-negative ammonia oxidizers to collectively grow on cyanate via reciprocal feeding; cyanases are widespread in the environment according to metagenomic data sets, pointing to the potential importance of cyanate in the nitrogen cycle. Nitrification is a central process in the global nitrogen cycle and plays a major role in fertilizer loss in industrial agriculture. Here Michael Wagner and colleagues report that the ammonia-oxidizing archaeon Nitrosphaera gargensis can grow on cyanate as its sole energy source — possibly the only known organism capable of doing so. The archaeon converts cyanate to ammonium and carbon dioxide using a cyanase enzyme. Further investigation of metagenomes shows that cyanases are widespread in the environment. This work highlights the potential importance of cyanate in the nitrogen cycle as a source of reduced nitrogen in the environment. Ammonia- and nitrite-oxidizing microorganisms are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and have essential roles in the global biogeochemical nitrogen cycle. The physiology of nitrifiers has been intensively studied, and urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 using cyanate as the sole source of energy and reductant; to our knowledge, the first organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade also containing cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite oxidizers supply cyanase-lacking ammonia oxidizers with ammonium from cyanate, which is fully nitrified by this microbial consortium through reciprocal feeding. By screening a comprehensive set of more than 3,000 publically available metagenomes from environmental samples, we reveal that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microorganisms, and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment.

196 citations


Journal ArticleDOI
TL;DR: The data indicate an importance of members of the family Desulfobacteraceae for naphthalene degradation under sulfate-reducing conditions in freshwater environments.

95 citations


Journal ArticleDOI
TL;DR: The novel bioinformatics tool MetaProSIP offers an automated high-throughput solution for a wide range of (13)C or (15)N protein-SIP experiments with special emphasis on the analysis of metaproteomic experiments where differential labeling of organisms can occur.
Abstract: We propose a joint experimental and theoretical approach to the automated reconstruction of elemental fluxes in microbial communities. While stable isotope probing of proteins (protein-SIP) has been successfully applied to study interactions and elemental carbon and nitrogen fluxes, the volume and complexity of mass spectrometric data in protein-SIP experiments pose new challenges for data analysis. Together with a flexible experimental setup, the novel bioinformatics tool MetaProSIP offers an automated high-throughput solution for a wide range of (13)C or (15)N protein-SIP experiments with special emphasis on the analysis of metaproteomic experiments where differential labeling of organisms can occur. The information calculated in MetaProSIP includes the determination of multiple relative isotopic abundances, the labeling ratio between old and new synthesized proteins, and the shape of the isotopic distribution. These parameters define the metabolic capacities and dynamics within the investigated microbial culture. MetaProSIP features a high degree of reproducibility, reliability, and quality control reporting. The ability to embed into the OpenMS framework allows for flexible construction of custom-tailored workflows. Software and documentation are available under an open-source license at www.openms.de/MetaProSIP.

60 citations


Journal ArticleDOI
02 Dec 2015-PLOS ONE
TL;DR: In female mice, the hypothesis that chronic DEHP exposure causes impaired insulin sensitivity, affects body weight, adipose tissue (AT) function and circulating metabolic parameters of obesity resistant 129S6 mice in vivo is tested and observed in female mice that DEHP treatment causes enhanced weight gain, fat mass, impaired insulin tolerance, changes in circulating adiponectin and adipOSE tissue Pparg, adiponECTin and estrogen expression.
Abstract: Di-(2-ethylhexyl)-phthalate (DEHP), an ubiquitous environmental contaminant, has been shown to cause adverse effects on glucose homeostasis and insulin sensitivity in epidemiological studies, but the underlying mechanisms are still unknown. We therefore tested the hypothesis that chronic DEHP exposure causes impaired insulin sensitivity, affects body weight, adipose tissue (AT) function and circulating metabolic parameters of obesity resistant 129S6 mice in vivo. An obesity-resistant mouse model was chosen to reduce a potential obesity bias of DEHP effects on metabolic parameters and AT function. The metabolic effects of 10-weeks exposure to DEHP were tested by insulin tolerance tests and quantitative assessment of 183 metabolites in mice. Furthermore, 3T3-L1 cells were cultured with DEHP for two days, differentiated into mature adipocytes in which the effects on insulin stimulated glucose and palmitate uptake, lipid content as well as on mRNA/protein expression of key adipocyte genes were investigated. We observed in female mice that DEHP treatment causes enhanced weight gain, fat mass, impaired insulin tolerance, changes in circulating adiponectin and adipose tissue Pparg, adiponectin and estrogen expression. Serum metabolomics indicated a general increase in phospholipid and carnitine concentrations. In vitro, DEHP treatment increases the proliferation rate and alters glucose uptake in adipocytes. Taken together, DEHP has significant effects on adipose tissue (AT) function and alters specific serum metabolites. Although, DEHP treatment led to significantly impaired insulin tolerance, it did not affect glucose tolerance, HOMA-IR, fasting glucose, insulin or triglyceride serum concentrations. This may suggest that DEHP treatment does not cause impaired glucose metabolism at the whole body level.

58 citations


Journal ArticleDOI
TL;DR: Dehalococcoides mccartyi strain DCMB5, a strain originating from dioxin-polluted river sediment, was examined for its capacity to dehalogenate diverse chloroaromatic compounds and revealed an irregular mode of cell division as well as the presence of pili, indicating that pilus formation is a feature of D. mCCartyi during organohalide respiration.
Abstract: Polyhalogenated aromatic compounds are harmful environmental contaminants and tend to persist in anoxic soils and sediments. Dehalococcoides mccartyi strain DCMB5, a strain originating from dioxin-polluted river sediment, was examined for its capacity to dehalogenate diverse chloroaromatic compounds. Strain DCMB5 used hexachlorobenzenes, pentachlorobenzenes, all three tetrachlorobenzenes, and 1,2,3-trichlorobenzene as well as 1,2,3,4-tetra- and 1,2,4-trichlorodibenzo-p-dioxin as electron acceptors for organohalide respiration. In addition, 1,2,3-trichlorodibenzo-p-dioxin and 1,3-, 1,2-, and 1,4-dichlorodibenzo-p-dioxin were dechlorinated, the latter to the nonchlorinated congener with a remarkably short lag phase of 1 to 4 days following transfer. Strain DCMB5 also dechlorinated pentachlorophenol and almost all tetra- and trichlorophenols. Tetrachloroethene was dechlorinated to trichloroethene and served as an electron acceptor for growth. To relate selected dechlorination activities to the expression of specific reductive dehalogenase genes, the proteomes of 1,2,3-trichlorobenzene-, pentachlorobenzene-, and tetrachloroethene-dechlorinating cultures were analyzed. Dcmb_86, an ortholog of the chlorobenzene reductive dehalogenase CbrA, was the most abundant reductive dehalogenase during growth with each electron acceptor, suggesting its pivotal role in organohalide respiration of strain DCMB5. Dcmb_1041 was specifically induced, however, by both chlorobenzenes, whereas 3 putative reductive dehalogenases, Dcmb_1434, Dcmb_1339, and Dcmb_1383, were detected only in tetrachloroethene-grown cells. The proteomes also harbored a type IV pilus protein and the components for its assembly, disassembly, and secretion. In addition, transmission electron microscopy of DCMB5 revealed an irregular mode of cell division as well as the presence of pili, indicating that pilus formation is a feature of D. mccartyi during organohalide respiration.

54 citations


Journal ArticleDOI
TL;DR: This proof-of-concept study is the first in which the culture-independent techniques of DNA-SIP and protein-Sip have been used to characterize the metabolism of a naturally occurring Methylophaga-like bacterium in the marine environment and thus provides a powerful approach to access the genome and proteome of uncultivated microbes involved in key processes in the environment.
Abstract: A variety of culture-independent techniques have been developed that can be used in conjunction with culture-dependent physiological and metabolic studies of key microbial organisms in order to better understand how the activity of natural populations influences and regulates all major biogeochemical cycles. In this study, we combined deoxyribonucleic acid-stable isotope probing (DNA-SIP) with metagenomics and metaproteomics to characterize an uncultivated marine methylotroph that actively incorporated carbon from (13) C-labeled methanol into biomass. By metagenomic sequencing of the heavy DNA, we retrieved virtually the whole genome of this bacterium and determined its metabolic potential. Through protein-stable isotope probing, the RuMP cycle was established as the main carbon assimilation pathway, and the classical methanol dehydrogenase-encoding gene mxaF, as well as three out of four identified xoxF homologues were found to be expressed. This proof-of-concept study is the first in which the culture-independent techniques of DNA-SIP and protein-SIP have been used to characterize the metabolism of a naturally occurring Methylophaga-like bacterium in the marine environment (i.e. Methylophaga thiooxydans L4) and thus provides a powerful approach to access the genome and proteome of uncultivated microbes involved in key processes in the environment.

52 citations


Journal ArticleDOI
TL;DR: The proteome of cells grown with pyruvate instead of formate as electron donor indicates a route of electrons from reduced ferredoxin via an Epsilonproteobacterial complex I and the quinone pool to PCE.
Abstract: Organohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration. We compared the global proteome of the versatile organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans grown with different electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). The most significant differences in protein abundance were found for gene products of the organohalide respiration region. This genomic region encodes the corrinoid and FeS cluster containing PCE reductive dehalogenase PceA and other proteins putatively involved in PCE metabolism such as those involved in corrinoid biosynthesis. The latter gene products as well as PceA and a putative quinol dehydrogenase were almost exclusively detected in cells grown with PCE. This finding suggests an electron flow from the electron donor such as formate or pyruvate via the quinone pool and a quinol dehydrogenase to PceA and the terminal electron acceptor PCE. Two putative accessory proteins, an IscU-like protein and a peroxidase-like protein, were detected with PCE only and might be involved in PceA maturation. The proteome of cells grown with pyruvate instead of formate as electron donor indicates a route of electrons from reduced ferredoxin via an Epsilonproteobacterial complex I and the quinone pool to PCE.

46 citations


Journal ArticleDOI
TL;DR: An insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy is provided, indicating that in the absence of oxygen, biodegradation is significantly suppressed and the metabolic coupling between methylotrophs and sulphate reducers in oxygen‐depleted petroleum‐polluted sediments is highlighted.
Abstract: Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments.

44 citations


Journal ArticleDOI
TL;DR: The comprehensive chemical, proteome and metabolomic data enabled the identification of effects on the pathway level in a time-resolved manner and also protein synthesis, lipid metabolism, and membrane dysfunction were identified as B[a]P specific effects.
Abstract: Benzo[a]pyrene (B[a]P) is an environmental contaminant mainly studied for its toxic/carcinogenic effects. For a comprehensive and pathway orientated mechanistic understanding of the effects directly triggered by a toxic (5 μM) or a subtoxic (50 nM) concentration of B[a]P or indirectly by its metabolites, we conducted time series experiments for up to 24 h to study the effects in murine hepatocytes. These cells rapidly take up and actively metabolize B[a]P, which was followed by quantitative analysis of the concentration of intracellular B[a]P and seven representative degradation products. Exposure with 5 μM B[a]P led to a maximal intracellular concentration of 1604 pmol/5 × 104 cells, leveling at 55 pmol/5 × 104 cells by the end of the time course. Changes in the global proteome (>1000 protein profiles) and metabolome (163 metabolites) were assessed in combination with B[a]P degradation. Abundance profiles of 236 (both concentrations), 190 (only 5 μM), and 150 (only 50 nM) proteins were found to be regula...

33 citations


Journal ArticleDOI
TL;DR: Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric Acid, and 2-methylhippuric acid were detected in (nearly) all samples, however, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples.

Journal ArticleDOI
TL;DR: This work proposes a meta-network approach, where the expression levels and taxonomic assignments of proteins are used as the most relevant clues for inferring an active set of reactions in a bacterial community, and provides a novel, context-specific reconstruction procedure based on metaproteomic andTaxonomic data.
Abstract: Motivation With the advent of meta-'omics' data, the use of metabolic networks for the functional analysis of microbial communities became possible However, while network-based methods are widely developed for single organisms, their application to bacterial communities is currently limited Results Herein, we provide a novel, context-specific reconstruction procedure based on metaproteomic and taxonomic data Without previous knowledge of a high-quality, genome-scale metabolic networks for each different member in a bacterial community, we propose a meta-network approach, where the expression levels and taxonomic assignments of proteins are used as the most relevant clues for inferring an active set of reactions Our approach was applied to draft the context-specific metabolic networks of two different naphthalene-enriched communities derived from an anthropogenically influenced, polyaromatic hydrocarbon contaminated soil, with (CN2) or without (CN1) bio-stimulation We were able to capture the overall functional differences between the two conditions at the metabolic level and predict an important activity for the fluorobenzoate degradation pathway in CN1 and for geraniol metabolism in CN2 Experimental validation was conducted, and good agreement with our computational predictions was observed We also hypothesize different pathway organizations at the organismal level, which is relevant to disentangle the role of each member in the communities The approach presented here can be easily transferred to the analysis of genomic, transcriptomic and metabolomic data



Journal ArticleDOI
01 Nov 2015-Methods
TL;DR: Amide hydrogen/deuterium exchange mass spectrometry (HDX MS) combined with molecular modeling and docking experiments was used to obtain structural models of proinflammatory chemokine interleukin-8 (IL-8) in complex with hexameric chondroitin sulfate, demonstrating that HDX-MS in combination with molecular modeled is a valuable approach for the analysis of protein/GAG complexes at physiological pH, temperature, and salt concentration.

Journal ArticleDOI
TL;DR: The investigation of differences between the coccoid and infectious spiral morphology of H. pylori with SILAC revealed the regulation of proteins that are involved in host colonization, motility, cell division as well as transcriptional and translational processes.

Journal ArticleDOI
TL;DR: In-depth structure-activity relationship studies revealed a palmitoylated ghrelin receptor ligand that displays an in vitro binding affinity in the low nanomolar range and in vitro metabolic analysis indicated a high stability in blood serum and liver homogenate.

Journal ArticleDOI
TL;DR: This study illustrates that a comprehensive evaluation of drug intake is neither achieved by questionnaires nor by biomonitoring alone, and a combination of both monitoring methods, providing complementary information, should be considered.
Abstract: Various studies pointed towards a relationship between chronic diseases such as asthma and allergy and environmental risk factors, which are one aspect of the so-called Exposome. These environmental risk factors include also the intake of drugs. One critical step in human development is the prenatal period, in which exposures might have critical impact on the child's health outcome. Thereby, the health effects of drugs taken during gestation are discussed controversially with regard to newborns' disease risk. Due to this, the drug intake of pregnant women in the third trimester was monitored by questionnaire, in addition to biomonitoring using a local birth cohort study, allowing correlations of drug exposure with disease risk. Therefore, 622 urine samples were analyzed by an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) urine screening and the results were compared to self-administered questionnaires. In total, 48% (n = 296) reported an intake of pharmaceuticals, with analgesics as the most frequent reported drug class in addition to dietary supplements. 182 times compounds were detected by urine screening, with analgesics (42%; n = 66) as the predominantly drug class. A comparison of reported and detected drug intake was performed for three different time spans between completion of the questionnaires and urine sampling. Even if the level of accordance was low in general, similar percentages (~25%, ~19%, and ~ 20%) were found for all groups. This study illustrates that a comprehensive evaluation of drug intake is neither achieved by questionnaires nor by biomonitoring alone. Instead, a combination of both monitoring methods, providing complementary information, should be considered.

Journal ArticleDOI
15 Sep 2015-Gene
TL;DR: In this article, a glycosyl hydrolase family 16 (GHF16) gene was sequenced from the midgut glands of the gecarcinid land crab, Gecarcoidea natalis and the freshwater crayfish, Cherax destructor.

Journal ArticleDOI
TL;DR: The present study shows that treatment of several animals in a stable with ceftiofur influences the resistance pattern of intestinal Escherichia coli of the treated as well as untreated animals housed in the same stable.
Abstract: Healthy farm animals have been found to act as a reservoir of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli). Therefore, the objective of the study was to determine the input of antimicrobial active ceftiofur metabolites in the stable via faeces and urine after intramuscular administration of the drug to pigs and the elucidation of the Escherichia coli ESBL resistance pattern of treated and untreated pigs housed in the same barn during therapy. For determination of the minimal inhibitory concentration (MIC) the method of microdilutionaccording to the recommended procedure of the Clinical and Laboratory Standards Institute was used. Inaddition to that, a qualitative determination was performed by agar dilution. Unsusceptible E. coli speciesselected via agar dilution with cefotaxime were confirmed by MALDI-TOF and ESBL encoding genes wereidentified by PCR. The amounts of ceftiofur measured as desfuroylceftiofur (DFC) in the different probes (plasma, urine, faeces and dust) were analysed by UPLC-MS/MS. In a first experiment two groups of pigs (6 animals per group) were housed in the same barn in two separated boxes. One group (group B) were treated with ceftiofur according to the licence (3 mg/kg administered intramuscularly (i.m.) on three consecutive days, day 1–3). During a second treatment period (day 29–31) an increased rate of ESBL resistant E. coli was detectable in these treated pigs and in the air of the stable. Moreover, the second group of animals (group A) formerly untreated but housed for the whole period in the same stable as the treated animals revealed increased resistance rates during their first treatment (day 45–47) with ceftiofur. In order to investigate the environmental input of ceftiofur during therapy and to simulate oral uptake of ceftiofur residues from the air of the stable a second set of experiments were performed. Pigs (6 animals) were treated with an interval of 2 weeks for 3 days with different doses of ceftiofur (3 mg/kg, 1 mg/kg and 0.3 mg/kg i.m.) as well as with 3 mg/kg per os) and the renal and biliary excretion of ceftiofur as its active metabolite were measured in comparison to the plasma levels. In addition to that, probes of the sedimentation dust and the air of the stable were analysed for drug residues. The present study shows that treatment of several animals in a stable with ceftiofur influences the resistance pattern of intestinal Escherichia coli of the treated as well as untreated animals housed in the same stable. During therapy with the drug which was administered by injection according to the licence we detected nameable amounts of ceftiofur and its active metabolites in the dust and air of the stable.

Journal ArticleDOI
TL;DR: The combination of phosphoproteomics and conventional quantitative shotgun analysis leads to a more comprehensive assessment of the signalling networks needed for the maintenance of the activated status of Jurkat T‐cells.
Abstract: Recent years have seen a constant development of tools for the global assessment of phosphoproteins. Here, we outline a concept for integrating approaches for quantitative proteomics and phosphoproteomics. The strategy was applied to the analysis of changes in signalling and protein synthesis occurring after activation of the T-cell receptor (TCR) pathway in a T-cell line (Jurkat cells). For this purpose, peptides were obtained from four biological replicates of activated and control Jurkat T-cells and phosphopeptides enriched via a TiO2-based chromatographic step. Both phosphopeptide-enriched and flow-through fractions were analyzed by LC-MS. We observed 1314 phosphopeptides in the enriched fraction whereas 19 were detected in the flow-through, enabling the quantification of 414 and eight phosphoproteins in the respective fractions. Pathway analysis revealed the differential regulation of many metabolic pathways. Among the quantified proteins, 11 kinases with known TCR-related function were detected. A kinase-substrate database search for the phosphosites identified also confirmed the activity of a further ten kinases. In total, these two approaches provided evidence of 19 unique TCR-related kinases. The combination of phosphoproteomics and conventional quantitative shotgun analysis leads to a more comprehensive assessment of the signalling networks needed for the maintenance of the activated status of Jurkat T-cells.

Journal ArticleDOI
TL;DR: The cytolysin-peptide bioconjugate fused by a cleavable linker enables a receptor-specific delivery as well as a potent intracellular drug-release with high cytotoxic activity.

Journal ArticleDOI
TL;DR: Indoor environments to be preferred locations for particle formation and growth after ventilation events, as a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.
Abstract: Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m3). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m−3. We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm−3. The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.

Journal ArticleDOI
TL;DR: This study exemplifies how an organism uses the inherent flexibility in its canonical protein synthesis machinery to recover some activity of an essential selenium-dependent enzyme in the absence of sec.

Journal ArticleDOI
TL;DR: Changes in the proteome of four cytotoxic T‐cell subtypes suggest that correct balancing of metabolism is key for differentiation processes.
Abstract: Differentiation of CD8(+) T lymphocytes into effector and memory cells is key for an adequate immune response and relies on complex interplay of pathways that convey signals from the cell surface to the nucleus. In this study, we investigated the proteome of four cytotoxic T-cell subtypes; naive, recently activated effector, effector, and memory cells. Cells were fractionated into membrane, cytosol, soluble nuclear, chromatin-bound, and cytoskeletal compartments. Following LC-MS/MS analysis, identified peptides were analyzed via MaxQuant. Compartment fractionation and gel-LC-MS separation resulted in 2399 proteins identified in total. Comparison between the different subsets resulted in 146 significantly regulated proteins for naive and effector cells, followed by 116 for activated, and 55 for memory cells. Besides Granzyme B signaling (for activated and/ or effector cells vs. naive cells), the most prominent changes occurred in the TCA cycle and aspartate degradation. These changes suggest that correct balancing of metabolism is key for differentiation processes. All MS data have been deposited in the ProteomeXchange with identifier PXD001065 (http://proteomecentral.proteomexchange.org/dataset/PXD001065).

Journal ArticleDOI
TL;DR: The results showed that by accounting for the contribution of daily variance, the standard deviations of the log-transformed phthalate values of the cohort samples are reduced but still larger than daily standard deviation values, with the exception of MCPrP concentrations.
Abstract: In the context of an epidemiological study, urinary concentrations of nine phthalic diester metabolites (monoethyl-, mono-(3-carboxypropyl)-, mono-n-butyl-, monoisobutyl-, monobenzyl-, mono-(2-ethylhexyl)-, mono-(5-hydroxy-2- ethylhexyl)-, mono-(5-oxo-2-ethylhexyl)- and mono-(5-carboxy-2-ethylpentyl)-phthalate) were quantified via LC-MS/ MS. As in the majority of epidemiological studies only single spot samples were available for urine analysis, the implicit assumption in this case is, that exposure data obtained from single spot samples are representative for a longer exposure period. To validate the relevance of single spot analyses we quantified the respective intra-individual variances of urine samples collected from ten volunteers once daily over a period of 30 days. Using the values for the daily variances, approximate values for the underlying population variances in the cohort samples representing the differences between the average individual metabolite levels were calculated. For most of the volunteers, daily metabolites variations were lower, than the variations observed in the epidemiological setup. The results showed that by accounting for the contribution of daily variance, the standard deviations of the log-transformed phthalate values of the cohort samples are reduced (14% to 28%) but still larger (3% to 66%) than daily standard deviation values, with the exception of MCPrP concentrations.

Posted ContentDOI
04 Nov 2015-bioRxiv
TL;DR: Flexible machine learning techniques based on sequence features and comparative genomics are applied to quantify the prevalence of sRNA ORFs under natural selection to maintain protein-coding function in phylogenetically diverse bacteria.
Abstract: While eukaryotic noncoding RNAs have recently received intense scrutiny, it is becoming clear that bacterial transcription is at least as pervasive. Bacterial small RNAs and antisense RNAs (sRNAs) are often assumed to be noncoding, due to their lack of long open reading frames (ORFs). However, there are numerous examples of sRNAs encoding for small proteins, whether or not they also have a regulatory role at the RNA level. Here, we apply flexible machine learning techniques based on sequence features and comparative genomics to quantify the prevalence of sRNA ORFs under natural selection to maintain protein-coding function in phylogenetically diverse bacteria. A majority of annotated sRNAs have at least one ORF between 10 and 50 amino acids long, and we conservatively predict that 188 ± 25.5 unannotated sRNA ORFs are under selection to maintain coding, an average of 13 per species considered here. This implies that overall at least 7.5 ± 0.3% of sRNAs have a coding ORF, and in some species at least 20% do. 84 ± 9.8 of these novel coding ORFs have some antisense overlap to annotated ORFs. As experimental validation, many of our predictions are translated according to ribosome profiling data and are identified via mass spectrometry shotgun proteomics. B. subtilis sRNAs with coding ORFs are enriched for high expression in biofilms and confluent growth, and two S. pneumoniae sRNAs with coding ORFs are involved in virulence. sRNA coding ORFs are enriched for transmembrane domains and many are novel components of type I toxin/antitoxin systems. Our predictions for sRNA coding ORFs, including novel type I toxins, are freely available in a user-friendly format at http://disco-bac.web.pasteur.fr.