scispace - formally typeset
Search or ask a question

Showing papers by "Paolo Giannozzi published in 2017"


Journal ArticleDOI
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software

3,638 citations


Journal ArticleDOI
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

2,818 citations


Book ChapterDOI
13 Nov 2017
TL;DR: The porting of PWscf (Plane-Wave Self Consistent Field), a key component of the Quantum ESPRESSO open-source suite of codes for materials modeling, to GPU systems using CUDA Fortran is described.
Abstract: We describe the porting of PWscf (Plane-Wave Self Consistent Field), a key component of the Quantum ESPRESSO open-source suite of codes for materials modeling, to GPU systems using CUDA Fortran. Kernel loop directives (CUF kernels) have been extensively used in order to have a single source code for both CPU and GPU implementations. The results of the GPU version have been carefully validated and the performance of the code on several GPU systems (both x86 and POWER8 based) has been compared with traditional Intel multi-core (CPU only) systems. This current GPU version can reduce the time-to-solution by an average factor of 2–3 running two different input cases widely used as benchmarks on small and large high performance computing systems.

17 citations