scispace - formally typeset
Search or ask a question

Showing papers by "Steve Schulze published in 2011"


Journal ArticleDOI
08 Jul 2011-Science
TL;DR: Multiwavelength observations of a unique γ-ray–selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source are presented.
Abstract: Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray-selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ∼100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.

404 citations


Journal ArticleDOI
TL;DR: In this article, a large sample of GRB afterglow and prompt-emission data was used to compare the optical afterglows (or lack thereof) of Type I GRBs with those of Type II GRBs.
Abstract: We use a large sample of GRB afterglow and prompt-emission data (adding further GRB afterglow observations in this work) to compare the optical afterglows (or the lack thereof) of Type I GRBs with those of Type II GRBs. In comparison to the afterglows of Type II GRBs, we find that those of Type I GRBs have a lower average luminosity and show an intrinsic spread of luminosities at least as wide. From late and deep upper limits on the optical transients, we establish limits on the maximum optical luminosity of any associated supernova, confirming older works and adding new results. We use deep upper limits on Type I GRB optical afterglows to constrain the parameter space of possible mini-SN emission associated with a compact-object merger. Using the prompt emission data, we search for correlations between the parameters of the prompt emission and the late optical afterglow luminosities. We find tentative correlations between the bolometric isotropic energy release and the optical afterglow luminosity at a fixed time after trigger (positive), and between the host offset and the luminosity (negative), but no significant correlation between the isotropic energy release and the duration of the GRBs. We also discuss three anomalous GRBs, GRB 060505, GRB 060614, and GRB 060121, in the light of their optical afterglow luminosities. (Abridged)

269 citations


Journal ArticleDOI
TL;DR: Unlike most previous unambiguous GRB-associated SNe, GRB 101219B has a large gamma-ray energy, a bright afterglow, and obeys the 'Amati' relation, thus being fully consistent with the cosmological population of GRBs.
Abstract: We report on the spectroscopic detection of supernova SN 2010ma associated with the long gamma-ray burst GRB 101219B. We observed the optical counterpart of the GRB on three nights with the X-shooter spectrograph at the Very Large Telescope. From weak absorption lines, we measure a redshift of z = 0.55. The first-epoch UV-near-infrared afterglow spectrum, taken 11.6 hr after the burst, is well fit by a power law consistent with the slope of the X-ray spectrum. The second- and third-epoch spectra (obtained 16.4 and 36.7 days after the burst), however, display clear bumps closely resembling those of the broad-lined type-Ic SN 1998bw if placed at z = 0.55. Apart from demonstrating that spectroscopic SN signatures can be observed for GRBs at these large distances, our discovery makes a step forward in establishing a general connection between GRBs and SNe. In fact, unlike most previous unambiguous GRB-associated SNe, GRB 101219B has a large gamma-ray energy (E iso = 4.2 × 1051 erg), a bright afterglow, and obeys the "Amati" relation, thus being fully consistent with the cosmological population of GRBs.

88 citations


Journal ArticleDOI
TL;DR: In this article, the authors derived the most probable circumburst density profile for a large number of Swift-detected bursts using well-sampled afterglow light curves in the optical and X-ray bands.
Abstract: According to our present understanding, long gamma-ray bursts (GRBs) originate from the collapse of massive stars, while short bursts are caused by to the coalescence of compact stellar objects. Because the afterglow evolution is determined by the circumburst density profile, n (r ), traversed by the fireball, it can be used to distinguish between a constant density medium, n (r ) = const. , and a free stellar wind, n (r ) ∝ r -2 . Our goal is to derive the most probable circumburst density profile for a large number of Swift -detected bursts using well-sampled afterglow light curves in the optical and X-ray bands. We combined all publicly available optical and Swift /X-ray afterglow data from June 2005 to September 2009 to find the best-sampled late-time afterglow light curves. After applying several selection criteria, our final sample consists of 27 bursts, including one short burst. The afterglow evolution was then studied within the framework of the fireball model. We find that the majority (18) of the 27 afterglow light curves are compatible with a constant density medium (ISM case). Only 6 of the 27 afterglows show evidence of a wind profile at late times. In particular, we set upper limits on the wind termination-shock radius, R T , for GRB fireballs that are propagating into an ISM profile and lower limits on R T for those that were found to propagate through a wind medium. Observational evidence for ISM profiles dominates in GRB afterglow studies, implying that most GRB progenitors might have relatively small wind termination-shock radii. A smaller group of progenitors, however, seems to be characterised by significantly more extended wind regions.

88 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented the results of a comprehensive study of the gamma-ray burst 080928 and its afterglow and showed that the SED during the main prompt emission phase agrees with synchrotron radiation.
Abstract: We present the results of a comprehensive study of the gamma-ray burst 080928 and of its afterglow. GRB 080928 was a long burst detected by Swift/BAT and Fermi/GBM. It is one of the exceptional cases where optical emission had already been detected when the GRB itself was still radiating in the gamma-ray band. For nearly 100 s simultaneous optical, X-ray and gamma-ray data provide a coverage of the spectral energy distribution of the transient source from about 1 eV to 150 keV. In particular, we show that the SED during the main prompt emission phase agrees with synchrotron radiation. We constructed the optical/near-infrared light curve and the spectral energy distribution based on Swift/UVOT, ROTSE-IIIa (Australia), and GROND (La Silla) data and compared it to the X-ray light curve retrieved from the Swift/XRT repository. We show that its bumpy shape can be modeled by multiple energy-injections into the forward shock. Furthermore, we investigate whether the temporal and spectral evolution of the tail emission of the first strong flare seen in the early X-ray light curve can be explained by large-angle emission (LAE). We find that a nonstandard LAE model is required to explain the observations. Finally, we report on the results of our search for the GRB host galaxy, for which only a deep upper limit can be provided.

67 citations


Journal ArticleDOI
TL;DR: The definitive version of this paper can be found at : http://onlinelibrary.wiley.com/ Copyright Wiley-Blackwell as discussed by the authors, 2017. All rights reserved.
Abstract: The definitive version can be found at : http://onlinelibrary.wiley.com/ Copyright Wiley-Blackwell

19 citations


Journal ArticleDOI
TL;DR: In this paper, the authors studied the gamma-ray burst (GRB) afterglow spectrum in comparison with a larger sample of GRB absorbers and concluded that GRB is most likely a Lyman limit system with a 0.03 < Z < 1.3 Z⊙ metallicity.
Abstract: GRB 070125 is among the most energetic bursts detected and the most extensively observed so far. Nevertheless, unresolved issues are still open in the literature on the physics of the afterglow and on the gamma-ray burst (GRB) environment. In particular, GRB 070125 was claimed to have exploded in a galactic halo environment, based on the uniqueness of the optical spectrum and the non-detection of an underlying host galaxy. In this work we collect all publicly available data and address these issues by modelling the near-infrared to X-ray spectral energy distribution (SED) and studying the high signal-to-noise ratio Very Large Telescope/FOcal Reducer/low dispersion Spectrograph afterglow spectrum in comparison with a larger sample of GRB absorbers. The SED reveals a synchrotron cooling break in the ultraviolet, low equivalent hydrogen column density and little reddening caused by a Large Magellanic Cloud type or Small Magellanic Cloud type extinction curve. From the weak Mg ii absorption at z= 1.5477 in the spectrum, we derived log N(Mg ii) = 12.96+0.13− 0.18 and upper limits on the ionic column density of several metals. These suggest that the GRB absorber is most likely a Lyman limit system with a 0.03 < Z < 1.3 Z⊙ metallicity. The comparison with other GRB absorbers places GRB 070125 at the low end of the absorption-line equivalent width distribution, confirming that weak spectral features and spectral-line poor absorbers are not so uncommon in afterglow spectra. Moreover, we show that the effect of photoionization on the gas surrounding the GRB, combined with a low N(H i) along a short segment of the line of sight within the host galaxy, can explain the lack of spectral features in GRB 070125. Finally, the non-detection of an underlying galaxy is consistent with a faint GRB host galaxy, well within the GRB host brightness distribution. Thus, the possibility that GRB 070125 is simply located in the outskirts of a gas-rich, massive star-forming region inside its small and faint host galaxy seems more likely than a gas-poor, halo environment origin.

16 citations


Journal ArticleDOI
TL;DR: The possibility that GRB 070125 is simply located in the outskirts of aGas-rich, massive star-forming region inside its small and faint host galaxy seems more likely than a gas-poor, halo environment origin.
Abstract: GRB 070125 is among the most energetic bursts detected and the most extensively observed so far. Nevertheless, unresolved issues are still open in the literature on the physics of the afterglow and on the GRB environment. In particular, GRB 070125 was claimed to have exploded in a galactic halo environment, based on the uniqueness of the optical spectrum and the non-detection of an underlying host galaxy. In this work we collect all publicly available data and address these issues by modelling the NIR-to-X-ray spectral energy distribution (SED) and studying the high signal-to-noise VLT/FORS afterglow spectrum in comparison with a larger sample of GRB absorbers. The SED reveals a synchrotron cooling break in the UV, low equivalent hydrogen column density and little reddening caused by a LMC- or SMC-type extinction curve. From the weak MgII absorption at z=1.5477 in the spectrum, we derived logN(MgII)=12.96+0.13-0.18 and upper limits on the ionic column density of several metals. These suggest that the GRB absorber is most likely an LLS with a 0.03Z\odot

9 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented observations of 10 GRB afterglows obtained from APEX and SMA, as well as the first detection of a GRB with ALMA, and put them into context with all the observations that have been published until now in the spectral range that will be covered by ALMA.
Abstract: GRBs generate an afterglow emission that can be detected from radio to X-rays during days, or even weeks after the initial explosion. The peak of this emission crosses the mm/submm range during the first hours to days, making their study in this range crucial for constraining the models. Observations have been limited until now due to the low sensitivity of the observatories in this range. We present observations of 10 GRB afterglows obtained from APEX and SMA, as well as the first detection of a GRB with ALMA, and put them into context with all the observations that have been published until now in the spectral range that will be covered by ALMA. The catalogue of mm/submm observations collected here is the largest to date and is composed of 102 GRBs, of which 88 had afterglow observations, whereas the rest are host galaxy searches. With our programmes, we contributed with data of 11 GRBs and the discovery of 2 submm counterparts. In total, the full sample, including data from the literature, has 22 afterglow detections with redshift ranging from 0.168 to 8.2. GRBs have been detected in mm/submm wavelengths with peak luminosities spanning 2.5 orders of magnitude, the most luminous reaching 10^33erg s^-1 Hz^-1. We observe a correlation between the X-ray brightness at 0.5 days and the mm/submm peak brightness. Finally we give a rough estimate of the distribution of peak flux densities of GRB afterglows, based on the current mm/submm sample. Observations in the mm/submm bands have been shown to be crucial for our understanding of the physics of GRBs, but have until now been limited by the sensitivity of the observatories. With the start of the operations at ALMA, the sensitivity will be increased by more than an order of magnitude. Our estimates predict that, once completed, ALMA will detect up to 98% of the afterglows if observed during the passage of the peak synchrotron emission.

7 citations


Proceedings ArticleDOI
24 Aug 2011
TL;DR: In this article, the afterglow evolution depends on the density profile of the circumburst medium (CBM), and the authors used this property to find the most probable CBM for a large number of Swift-detected bursts with well-sampled optical and X-ray light curves.
Abstract: Observational and theoretical evidence suggest that long gamma‐ray bursts (GRBs) originate from the collapse of massive stars, while short bursts are caused by the coalescence of stellar compact objects. Finding direct evidence for both scenarios is challenging. Intriguingly, the afterglow evolution depends on the density profile of the circumburst medium (CBM). We use this property to find the most probable CBM for a large number of Swift‐detected bursts with well‐sampled optical and X‐ray light curves. In our study we distinguish between a constant density medium, n(r) = const., and a free stellar wind, n(r)∝r−2. After applying several selection criteria, our sample consists of 27 bursts, including one short burst. The majority (18) of the 27 afterglows favor an ISM profile; in only six bursts a wind medium at late times is preferred. Furthermore, we set limits on the wind‐termination shock radius. Bursts favoring a constant density environment also favor smaller wind‐termination shock radii than bursts...

2 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the spectroscopic detection of supernova SN 2010ma associated with the long gamma-ray burst GRB 101219B. From weak absorption lines, they measured a redshift of z = 0.55.
Abstract: We report on the spectroscopic detection of supernova SN 2010ma associated with the long gamma-ray burst GRB 101219B. We observed the optical counterpart of the GRB on three nights with the X-shooter spectrograph at the VLT. From weak absorption lines, we measure a redshift of z = 0.55. The first epoch UV--near-infrared afterglow spectrum, taken 11.6 hr after the burst, is well fit by a power law consistent with the slope of the X-ray spectrum. The second and third epoch spectra (obtained 16.4 and 36.7 days after the burst), however, display clear bumps closely resembling those of the broad-lined type-Ic SN 1998bw if placed at z=0.55. Apart from demonstrating that spectroscopic SN signatures can be observed for GRBs at these large distances, our discovery makes a step forward in establishing a general connection between GRBs and SNe. In fact, unlike most previous unambiguous GRB-associated SNe, GRB 101219B has a large gamma-ray energy (E_iso = 4.2 x 10^{51} erg), a bright afterglow, and obeys the "Amati" relation, thus being fully consistent with the cosmological population of GRBs.