scispace - formally typeset
Search or ask a question

Showing papers by "Vamsi K. Mootha published in 2020"


Journal ArticleDOI
08 Jul 2020-Nature
TL;DR: An interbacterial toxin that catalyses the deamination of cytidines within double-stranded DNA forms part of a CRISPR-free, RNA-free base editing system that enables manipulation of human mitochondrial DNA.
Abstract: Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)—for example by a CRISPR–Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders. An interbacterial toxin that catalyses the deamination of cytidines within double-stranded DNA forms part of a CRISPR-free, RNA-free base editing system that enables manipulation of human mitochondrial DNA.

289 citations


Journal ArticleDOI
30 Apr 2020-Cell
TL;DR: This resource performs genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen or low oxygen, and links hundreds of genes to oxygen homeostasis.

104 citations


Journal ArticleDOI
28 May 2020-eLife
TL;DR: This work systematically combined acute mitochondrial inhibitors with genetic tools for compartment-specific NADH oxidation to trace mechanisms linking different forms of mitochondrial dysfunction to the ISR in proliferating mouse myoblasts and in differentiated myotubes, revealing multiple paths that depend both on the nature of the mitochondrial defect and on the metabolic state of the cell.
Abstract: Mitochondrial dysfunction is associated with activation of the integrated stress response (ISR) but the underlying triggers remain unclear. We systematically combined acute mitochondrial inhibitors with genetic tools for compartment-specific NADH oxidation to trace mechanisms linking different forms of mitochondrial dysfunction to the ISR in proliferating mouse myoblasts and in differentiated myotubes. In myoblasts, we find that impaired NADH oxidation upon electron transport chain (ETC) inhibition depletes asparagine, activating the ISR via the eIF2α kinase GCN2. In myotubes, however, impaired NADH oxidation following ETC inhibition neither depletes asparagine nor activates the ISR, reflecting an altered metabolic state. ATP synthase inhibition in myotubes triggers the ISR via a distinct mechanism related to mitochondrial inner-membrane hyperpolarization. Our work dispels the notion of a universal path linking mitochondrial dysfunction to the ISR, instead revealing multiple paths that depend both on the nature of the mitochondrial defect and on the metabolic state of the cell.

94 citations


Journal ArticleDOI
27 May 2020-Nature
TL;DR: It is demonstrated that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels, and underscores the utility of genetic tools such as Lb NOX to empower studies of 'causal metabolism’.
Abstract: The cellular NADH/NAD+ ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD+ ratio in mice. By combining this genetic tool with metabolomics, we identify circulating α-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD+ ratio, also known as reductive stress. In humans, elevations in circulating α-hydroxybutyrate levels have previously been associated with impaired glucose tolerance2, insulin resistance3 and mitochondrial disease4, and are associated with a common genetic variant in GCKR5, which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD+ ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of ‘causal metabolism’. The authors identify an increased hepatic NADH/NAD+ ratio as an underlying metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases.

89 citations


Journal ArticleDOI
TL;DR: This study lays the groundwork for a class of injectable therapeutic enzymes that alleviates intracellular redox imbalances by directly targeting circulating redox-coupled metabolites, and improves NADH:NAD+ balance in the heart and brain.
Abstract: An elevated intracellular NADH:NAD+ ratio, or 'reductive stress', has been associated with multiple diseases, including disorders of the mitochondrial electron transport chain. As the intracellular NADH:NAD+ ratio can be in near equilibrium with the circulating lactate:pyruvate ratio, we hypothesized that reductive stress could be alleviated by oxidizing extracellular lactate to pyruvate. We engineered LOXCAT, a fusion of bacterial lactate oxidase (LOX) and catalase (CAT), which irreversibly converts lactate and oxygen to pyruvate and water. Addition of purified LOXCAT to the medium of cultured human cells with a defective electron transport chain decreased the extracellular lactate:pyruvate ratio, normalized the intracellular NADH:NAD+ ratio, upregulated glycolytic ATP production and restored cellular proliferation. In mice, tail-vein-injected LOXCAT lowered the circulating lactate:pyruvate ratio, blunted a metformin-induced rise in blood lactate:pyruvate ratio and improved NADH:NAD+ balance in the heart and brain. Our study lays the groundwork for a class of injectable therapeutic enzymes that alleviates intracellular redox imbalances by directly targeting circulating redox-coupled metabolites.

68 citations


Journal ArticleDOI
07 Aug 2020-eLife
TL;DR: The structural observations suggest that Ca2+ changes the dimerization interaction betweenMICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states.
Abstract: Mitochondrial Ca2+ uptake is mediated by an inner mitochondrial membrane protein called the mitochondrial calcium uniporter. In humans, the uniporter functions as a holocomplex consisting of MCU, EMRE, MICU1 and MICU2, among which MCU and EMRE form a subcomplex and function as the conductive channel while MICU1 and MICU2 are EF-hand proteins that regulate the channel activity in a Ca2+-dependent manner. Here, we present the EM structures of the human mitochondrial calcium uniporter holocomplex (uniplex) in the presence and absence of Ca2+, revealing distinct Ca2+ dependent assembly of the uniplex. Our structural observations suggest that Ca2+ changes the dimerization interaction between MICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states.

61 citations


Journal ArticleDOI
TL;DR: Yeast mutants defective in their ability to synthesize different phospholipids are used to identify a specific requirement of cardiolipin (CL) in the stability and function of the mitochondrial uniporter, raising the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome.
Abstract: Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL) We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes

52 citations


Journal ArticleDOI
TL;DR: A broad range of heteroplasmy is observed across all cell types but also found markedly reduced heteroplAsmy in T cells, a finding consistent with purifying selection within this lineage.
Abstract: Many mitochondrial diseases are caused by mutations in mitochondrial DNA (mtDNA). Patients' cells contain a mixture of mutant and nonmutant mtDNA (a phenomenon called heteroplasmy). The proportion of mutant mtDNA varies across patients and among tissues within a patient. We simultaneously assayed single-cell heteroplasmy and cell state in thousands of blood cells obtained from three unrelated patients who had A3243G-associated mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes. We observed a broad range of heteroplasmy across all cell types but also found markedly reduced heteroplasmy in T cells, a finding consistent with purifying selection within this lineage. We observed this pattern in six additional patients who had heteroplasmic A3243G without strokelike episodes. (Funded by the Marriott Foundation and others.).

48 citations


Journal ArticleDOI
TL;DR: The data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes, and similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.
Abstract: Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.

24 citations


Journal ArticleDOI
07 Aug 2020
TL;DR: This work identifies a new domain in mitochondrial calcium uniporter that determines its dependence on its binding partner EMRE, and calls this region in human MCU the EMRE dependence domain (EDD).
Abstract: The mitochondrial calcium uniporter (MCU) is a calcium-activated calcium channel critical for signaling and bioenergetics. MCU, the pore-forming subunit of the uniporter, contains two transmembrane domains and is found in all major eukaryotic taxa. In amoeba and fungi, MCU homologs are sufficient to form a functional calcium channel, whereas human MCU exhibits a strict requirement for the metazoan protein essential MCU regulator (EMRE) for conductance. Here, we exploit this evolutionary divergence to decipher the molecular basis of human MCU's dependence on EMRE. By systematically generating chimeric proteins that consist of EMRE-independent Dictyostelium discoideum MCU and Homo sapiens MCU (HsMCU), we converged on a stretch of 10 amino acids in D. discoideum MCU that can be transplanted to HsMCU to render it EMRE independent. We call this region in human MCU the EMRE dependence domain (EDD). Crosslinking experiments show that EMRE directly interacts with HsMCU at its transmembrane domains as well as the EDD. Our results suggest that EMRE stabilizes the EDD of MCU, permitting both channel opening and calcium conductance, consistent with recently published structures of MCU-EMRE.

5 citations



Posted ContentDOI
03 Jul 2020-bioRxiv
TL;DR: The structural observations suggest that Ca2+ changes the dimerization interaction betweenMICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states.
Abstract: Mitochondrial Ca2+ uptake plays an important role in cellular physiology such as modulating ATP production, regulating cytoplasmic Ca2+ dynamics, and triggering cell death, and is mediated by the mitochondrial calcium uniporter, a highly selective calcium channel localized to the inner mitochondrial membrane In humans, the uniporter functions as a holocomplex consisting of MCU, EMRE, MICU1 and MICU2, among which MCU and EMRE form a subcomplex and function as the conductive channel while MICU1 and MICU2 are EF-hand proteins that regulate the channel activity in a Ca2+ dependent manner Here we present the EM structures of the human mitochondrial calcium uniporter holocomplex (uniplex) in the presence and absence of Ca2+, revealing distinct Ca2+ dependent assembly of the uniplex In the presence of Ca2+, MICU1 and MICU2 form a heterotetramer of MICU1-(MICU2)2-MICU1 and bridge the dimeric form of the MCU-EMRE subcomplex through electrostatic interactions between MICU1 and EMRE, leaving the MCU channel pore unblocked In the absence of Ca2+, multiple uniplex assemblies are observed but is predominantly occupied by the MICU1 subunit from a MICU1-MICU2 heterodimer blocking the MCU channel pore Our structural observations suggest that Ca2+ changes the dimerization interaction between MICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states

Posted ContentDOI
24 Apr 2020-medRxiv
TL;DR: Additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C are found, supporting a digenic inheritance.
Abstract: Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6 months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation, however only ∼1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. The spontaneous recovery in infants with digenic mutations is modulated by changes in amino acid availability in a multi-step process. First, the integrated stress-response associated with increased FGF21 and GDF15 expression enhances catabolism via β-oxidation and the TCA cycle increasing the availability of amino acids. In the second phase mitochondrial biogenesis increases via mTOR activation, leading to improved mitochondrial translation and recovery. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.