scispace - formally typeset
Search or ask a question
Author

Victor C. M. Leung

Bio: Victor C. M. Leung is an academic researcher from University of British Columbia. The author has contributed to research in topics: Wireless network & Wireless. The author has an hindex of 91, co-authored 1585 publications receiving 40397 citations. Previous affiliations of Victor C. M. Leung include Huazhong University of Science and Technology & University of Hong Kong.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper provides a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research, and presents a taxonomy of B Ban projects that have been introduced/proposed to date.
Abstract: Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of networks is paving the way for the deployment of innovative healthcare monitoring applications. In the past few years, much of the research in the area of body area networks has focused on issues related to wireless sensor designs, sensor miniaturization, low-power sensor circuitry, signal processing, and communications protocols. In this paper, we present an overview of body area networks, and a discussion of BAN communications types and their related issues. We provide a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research. We also present a taxonomy of BAN projects that have been introduced/proposed to date. Finally, we highlight some of the design challenges and open issues that still need to be addressed to make BANs truly ubiquitous for a wide range of applications.

1,239 citations

Journal ArticleDOI
TL;DR: A novel edge caching scheme based on the concept of content-centric networking or information-centric networks is proposed and evaluated, using trace-driven simulations to evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks.
Abstract: The demand for rich multimedia services over mobile networks has been soaring at a tremendous pace over recent years. However, due to the centralized architecture of current cellular networks, the wireless link capacity as well as the bandwidth of the radio access networks and the backhaul network cannot practically cope with the explosive growth in mobile traffic. Recently, we have observed the emergence of promising mobile content caching and delivery techniques, by which popular contents are cached in the intermediate servers (or middleboxes, gateways, or routers) so that demands from users for the same content can be accommodated easily without duplicate transmissions from remote servers; hence, redundant traffic can be significantly eliminated. In this article, we first study techniques related to caching in current mobile networks, and discuss potential techniques for caching in 5G mobile networks, including evolved packet core network caching and radio access network caching. A novel edge caching scheme based on the concept of content-centric networking or information-centric networking is proposed. Using trace-driven simulations, we evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks. Furthermore, we conclude the article by exploring new relevant opportunities and challenges.

1,098 citations

Book
30 May 2013
TL;DR: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation.
Abstract: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation. In "Representational Learning with ELMs for Big Data," Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang, and Chi Man Vong propose using the ELM as an auto-encoder for learning feature representations using singular values. In "A Secure and Practical Mechanism for Outsourcing ELMs in Cloud Computing," Jiarun Lin, Jianping Yin, Zhiping Cai, Qiang Liu, Kuan Li, and Victor C.M. Leung propose a method for handling large data applications by outsourcing to the cloud that would dramatically reduce ELM training time. In "ELM-Guided Memetic Computation for Vehicle Routing," Liang Feng, Yew-Soon Ong, and Meng-Hiot Lim consider the ELM as an engine for automating the encapsulation of knowledge memes from past problem-solving experiences. In "ELMVIS: A Nonlinear Visualization Technique Using Random Permutations and ELMs," Anton Akusok, Amaury Lendasse, Rui Nian, and Yoan Miche propose an ELM method for data visualization based on random permutations to map original data and their corresponding visualization points. In "Combining ELMs with Random Projections," Paolo Gastaldo, Rodolfo Zunino, Erik Cambria, and Sergio Decherchi analyze the relationships between ELM feature-mapping schemas and the paradigm of random projections. In "Reduced ELMs for Causal Relation Extraction from Unstructured Text," Xuefeng Yang and Kezhi Mao propose combining ELMs with neuron selection to optimize the neural network architecture and improve the ELM ensemble's computational efficiency. In "A System for Signature Verification Based on Horizontal and Vertical Components in Hand Gestures," Beom-Seok Oh, Jehyoung Jeon, Kar-Ann Toh, Andrew Beng Jin Teoh, and Jaihie Kim propose a novel paradigm for hand signature biometry for touchless applications without the need for handheld devices. Finally, in "An Adaptive and Iterative Online Sequential ELM-Based Multi-Degree-of-Freedom Gesture Recognition System," Hanchao Yu, Yiqiang Chen, Junfa Liu, and Guang-Bin Huang propose an online sequential ELM-based efficient gesture recognition algorithm for touchless human-machine interaction.

705 citations

Journal ArticleDOI
TL;DR: Simulation results reveal that the proposed system is effective and feasible in collecting, calculating, and storing trust values in vehicular networks.
Abstract: Vehicular networks enable vehicles to generate and broadcast messages in order to improve traffic safety and efficiency. However, due to the nontrusted environments, it is difficult for vehicles to evaluate the credibilities of received messages. In this paper, we propose a decentralized trust management system in vehicular networks based on blockchain techniques. In this system, vehicles can validate the received messages from neighboring vehicles using Bayesian Inference Model. Based on the validation result, the vehicle will generate a rating for each message source vehicle. With the ratings uploaded from vehicles, roadside units (RSUs) calculate the trust value offsets of involved vehicles and pack these data into a “block.” Then, each RSU will try to add their “blocks” to the trust blockchain which is maintained by all the RSUs. By employing the joint proof-of-work (PoW) and proof-of-stake consensus mechanism, the more total value of offsets (stake) is in the block, the easier RSU can find the nonce for the hash function (PoW). In this way, all RSUs collaboratively maintain an updated, reliable, and consistent trust blockchain. Simulation results reveal that the proposed system is effective and feasible in collecting, calculating, and storing trust values in vehicular networks.

650 citations

Journal ArticleDOI
TL;DR: By consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge, i.e., Edge DL.
Abstract: Ubiquitous sensors and smart devices from factories and communities are generating massive amounts of data, and ever-increasing computing power is driving the core of computation and services from the cloud to the edge of the network. As an important enabler broadly changing people’s lives, from face recognition to ambitious smart factories and cities, developments of artificial intelligence (especially deep learning, DL) based applications and services are thriving. However, due to efficiency and latency issues, the current cloud computing service architecture hinders the vision of “providing artificial intelligence for every person and every organization at everywhere”. Thus, unleashing DL services using resources at the network edge near the data sources has emerged as a desirable solution. Therefore, edge intelligence , aiming to facilitate the deployment of DL services by edge computing, has received significant attention. In addition, DL, as the representative technique of artificial intelligence, can be integrated into edge computing frameworks to build intelligent edge for dynamic, adaptive edge maintenance and management. With regard to mutually beneficial edge intelligence and intelligent edge , this paper introduces and discusses: 1) the application scenarios of both; 2) the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework; 3) challenges and future trends of more pervasive and fine-grained intelligence. We believe that by consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge , i.e., Edge DL.

611 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: This timely monograph is a distillation of knowledge of hepatitis B, C and D, based on a review of 1000 studies by a small group of scientists, and it is concluded that hepatitis D virus cannot be classified as a human carcinogen.
Abstract: Viral hepatitis in all its forms is a major public health problem throughout the world, affecting several hundreds of millions of people. Viral hepatitis is a cause of considerable morbidity and mortality both from acute infection and chronic sequelae which include, in the case of hepatitis B, C and D, chronic active hepatitis and cirrhosis. Hepatocellular carcinoma, which is one of the 10 commonest cancers worldwide, is closely associated with hepatitis B and, at least in some regions of the world, with hepatitis C virus. This timely monograph is a distillation of knowledge of hepatitis B, C and D, based on a review of 1000 studies by a small group of scientists. (It is interesting to note in passing that some 5000 papers on viral hepatitis are published annually in the world literature.) The epidemiological, clinical and experimental data on the association between infection with hepatitis B virus and primary liver cancer in humans are reviewed in a readable and succinct format. The available information on hepatitis C and progression to chronic infection is also evaluated and it is concluded (perhaps a little prematurely) that hepatitis C virus is carcinogenic. However, it is concluded that hepatitis D virus, an unusual virus with a number of similarities to certain plant viral satellites and viroids, cannot be classified as a human carcinogen. There are some minor criticisms: there are few illustrations and some complex tabulations (for example, Table 6) and no subject index. A cumulative cross index to IARC Monographs is of little value and occupies nearly 30 pages. This small volume is a useful addition to the overwhelming literature on viral hepatitis, and the presentation is similar to the excellent World Health Organisation Technical Reports series on the subject published in the past. It is strongly recommended as a readable up-to-date summary of a complex subject; and at a cost of 65 Sw.fr (approximately £34) is excellent value. A J ZUCKERMAN

11,533 citations

Journal ArticleDOI
TL;DR: A new learning algorithm called ELM is proposed for feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs which tends to provide good generalization performance at extremely fast learning speed.

10,217 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations