scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Internet of Things Journal in 2019"


Journal ArticleDOI
TL;DR: An in-depth survey of BCoT is presented and the insights of this new paradigm are discussed and the open research directions in this promising area are outlined.
Abstract: Internet of Things (IoT) is reshaping the incumbent industry to smart industry featured with data-driven decision-making. However, intrinsic features of IoT result in a number of challenges, such as decentralization, poor interoperability, privacy, and security vulnerabilities. Blockchain technology brings the opportunities in addressing the challenges of IoT. In this paper, we investigate the integration of blockchain technology with IoT. We name such synthesis of blockchain and IoT as blockchain of things (BCoT). This paper presents an in-depth survey of BCoT and discusses the insights of this new paradigm. In particular, we first briefly introduce IoT and discuss the challenges of IoT. Then, we give an overview of blockchain technology. We next concentrate on introducing the convergence of blockchain and IoT and presenting the proposal of BCoT architecture. We further discuss the issues about using blockchain for fifth generation beyond in IoT as well as industrial applications of BCoT. Finally, we outline the open research directions in this promising area.

654 citations


Journal ArticleDOI
TL;DR: Simulation results reveal that the proposed system is effective and feasible in collecting, calculating, and storing trust values in vehicular networks.
Abstract: Vehicular networks enable vehicles to generate and broadcast messages in order to improve traffic safety and efficiency. However, due to the nontrusted environments, it is difficult for vehicles to evaluate the credibilities of received messages. In this paper, we propose a decentralized trust management system in vehicular networks based on blockchain techniques. In this system, vehicles can validate the received messages from neighboring vehicles using Bayesian Inference Model. Based on the validation result, the vehicle will generate a rating for each message source vehicle. With the ratings uploaded from vehicles, roadside units (RSUs) calculate the trust value offsets of involved vehicles and pack these data into a “block.” Then, each RSU will try to add their “blocks” to the trust blockchain which is maintained by all the RSUs. By employing the joint proof-of-work (PoW) and proof-of-stake consensus mechanism, the more total value of offsets (stake) is in the block, the easier RSU can find the nonce for the hash function (PoW). In this way, all RSUs collaboratively maintain an updated, reliable, and consistent trust blockchain. Simulation results reveal that the proposed system is effective and feasible in collecting, calculating, and storing trust values in vehicular networks.

650 citations


Journal ArticleDOI
TL;DR: A comprehensive survey on UAV communication toward 5G/B5G wireless networks is presented and an exhaustive review of various 5G techniques based on Uav platforms is provided, which are categorize by different domains, including physical layer, network layer, and joint communication, computing, and caching.
Abstract: Providing ubiquitous connectivity to diverse device types is the key challenge for 5G and beyond 5G (B5G). Unmanned aerial vehicles (UAVs) are expected to be an important component of the upcoming wireless networks that can potentially facilitate wireless broadcast and support high rate transmissions. Compared to the communications with fixed infrastructure, UAV has salient attributes, such as flexible deployment, strong line-of-sight connection links, and additional design degrees of freedom with the controlled mobility. In this paper, a comprehensive survey on UAV communication toward 5G/B5G wireless networks is presented. We first briefly introduce essential background and the space–air–ground integrated networks, as well as discuss related research challenges faced by the emerging integrated network architecture. We then provide an exhaustive review of various 5G techniques based on UAV platforms, which we categorize by different domains, including physical layer, network layer, and joint communication, computing, and caching. In addition, a great number of open research problems are outlined and identified as possible future research directions.

624 citations


Journal ArticleDOI
TL;DR: A reputation-based data sharing scheme to ensure high-quality data sharing among vehicles and a consortium blockchain and smart contract technologies to achieve secure data storage and sharing in vehicular edge networks.
Abstract: The drastically increasing volume and the growing trend on the types of data have brought in the possibility of realizing advanced applications such as enhanced driving safety, and have enriched existing vehicular services through data sharing among vehicles and data analysis. Due to limited resources with vehicles, vehicular edge computing and networks (VECONs) i.e., the integration of mobile edge computing and vehicular networks, can provide powerful computing and massive storage resources. However, road side units that primarily presume the role of vehicular edge computing servers cannot be fully trusted, which may lead to serious security and privacy challenges for such integrated platforms despite their promising potential and benefits. We exploit consortium blockchain and smart contract technologies to achieve secure data storage and sharing in vehicular edge networks. These technologies efficiently prevent data sharing without authorization. In addition, we propose a reputation-based data sharing scheme to ensure high-quality data sharing among vehicles. A three-weight subjective logic model is utilized for precisely managing reputation of the vehicles. Numerical results based on a real dataset show that our schemes achieve reasonable efficiency and high-level of security for data sharing in VECONs.

569 citations


Journal ArticleDOI
TL;DR: This article introduces reputation as the metric to measure the reliability and trustworthiness of the mobile devices, then designs a reputation-based worker selection scheme for reliable federated learning by using a multiweight subjective logic model and leverages the blockchain to achieve secure reputation management for workers with nonrepudiation and tamper-resistance properties.
Abstract: Federated learning is an emerging machine learning technique that enables distributed model training using local datasets from large-scale nodes, e.g., mobile devices, but shares only model updates without uploading the raw training data. This technique provides a promising privacy preservation for mobile devices while simultaneously ensuring high learning performance. The majority of existing work has focused on designing advanced learning algorithms with an aim to achieve better learning performance. However, the challenges, such as incentive mechanisms for participating in training and worker (i.e., mobile devices) selection schemes for reliable federated learning, have not been explored yet. These challenges have hindered the widespread adoption of federated learning. To address the above challenges, in this article, we first introduce reputation as the metric to measure the reliability and trustworthiness of the mobile devices. We then design a reputation-based worker selection scheme for reliable federated learning by using a multiweight subjective logic model. We also leverage the blockchain to achieve secure reputation management for workers with nonrepudiation and tamper-resistance properties in a decentralized manner. Moreover, we propose an effective incentive mechanism combining reputation with contract theory to motivate high-reputation mobile devices with high-quality data to participate in model learning. Numerical results clearly indicate that the proposed schemes are efficient for reliable federated learning in terms of significantly improving the learning accuracy.

544 citations


Journal ArticleDOI
TL;DR: This paper considers MEC for a representative mobile user in an ultradense sliced RAN, where multiple base stations are available to be selected for computation offloading and proposes a double deep ${Q}$ -network (DQN)-based strategic computation offload algorithm to learn the optimal policy without knowing a priori knowledge of network dynamics.
Abstract: To improve the quality of computation experience for mobile devices, mobile-edge computing (MEC) is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network (RAN), which supports both traditional communication and MEC services. Nevertheless, the design of computation offloading policies for a virtual MEC system remains challenging. Specifically, whether to execute a computation task at the mobile device or to offload it for MEC server execution should adapt to the time-varying network dynamics. This paper considers MEC for a representative mobile user in an ultradense sliced RAN, where multiple base stations (BSs) are available to be selected for computation offloading. The problem of solving an optimal computation offloading policy is modeled as a Markov decision process, where our objective is to maximize the long-term utility performance whereby an offloading decision is made based on the task queue state, the energy queue state as well as the channel qualities between mobile user and BSs. To break the curse of high dimensionality in state space, we first propose a double deep ${Q}$ -network (DQN)-based strategic computation offloading algorithm to learn the optimal policy without knowing a priori knowledge of network dynamics. Then motivated by the additive structure of the utility function, a ${Q}$ -function decomposition technique is combined with the double DQN, which leads to a novel learning algorithm for the solving of stochastic computation offloading. Numerical experiments show that our proposed learning algorithms achieve a significant improvement in computation offloading performance compared with the baseline policies.

528 citations


Journal ArticleDOI
TL;DR: A smart contract-based framework, which consists of multiple access control contracts, one judge contract (JC), and one register contract (RC), to achieve distributed and trustworthy access control for IoT systems is proposed.
Abstract: This paper investigates a critical access control issue in the Internet of Things (IoT). In particular, we propose a smart contract-based framework, which consists of multiple access control contracts (ACCs), one judge contract (JC), and one register contract (RC), to achieve distributed and trustworthy access control for IoT systems. Each ACC provides one access control method for a subject-object pair, and implements both static access right validation based on predefined policies and dynamic access right validation by checking the behavior of the subject. The JC implements a misbehavior-judging method to facilitate the dynamic validation of the ACCs by receiving misbehavior reports from the ACCs, judging the misbehavior and returning the corresponding penalty. The RC registers the information of the access control and misbehavior-judging methods as well as their smart contracts, and also provides functions (e.g., register, update, and delete) to manage these methods. To demonstrate the application of the framework, we provide a case study in an IoT system with one desktop computer, one laptop and two Raspberry Pi single-board computers, where the ACCs, JC, and RC are implemented based on the Ethereum smart contract platform to achieve the access control.

498 citations


Journal ArticleDOI
TL;DR: A reasoned comparison of the considered IoT technologies with respect to a set of qualifying security attributes, namely integrity, anonymity, confidentiality, privacy, access control, authentication, authorization, resilience, self organization is concluded.
Abstract: The Internet of Things (IoT) is rapidly spreading, reaching a multitude of different domains, including personal health care, environmental monitoring, home automation, smart mobility, and Industry 4.0. As a consequence, more and more IoT devices are being deployed in a variety of public and private environments, progressively becoming common objects of everyday life. It is hence apparent that, in such a scenario, cybersecurity becomes critical to avoid threats like leakage of sensible information, denial of service (DoS) attacks, unauthorized network access, and so on. Unfortunately, many low-end IoT commercial products do not usually support strong security mechanisms, and can hence be target of—or even means for—a number of security attacks. The aim of this article is to provide a broad overview of the security risks in the IoT sector and to discuss some possible counteractions. To this end, after a general introduction to security in the IoT domain, we discuss the specific security mechanisms adopted by the most popular IoT communication protocols. Then, we report and analyze some of the attacks against real IoT devices reported in the literature, in order to point out the current security weaknesses of commercial IoT solutions and remark the importance of considering security as an integral part in the design of IoT systems. We conclude this article with a reasoned comparison of the considered IoT technologies with respect to a set of qualifying security attributes, namely integrity, anonymity, confidentiality, privacy, access control, authentication, authorization, resilience, self organization.

415 citations


Journal ArticleDOI
TL;DR: An iterative heuristic MEC resource allocation algorithm to make the offloading decision dynamically and results demonstrate that the algorithm outperforms the existing schemes in terms of execution latency and offloading efficiency.
Abstract: With the evolutionary development of latency sensitive applications, delay restriction is becoming an obstacle to run sophisticated applications on mobile devices. Partial computation offloading is promising to enable these applications to execute on mobile user equipments with low latency. However, most of the existing researches focus on either cloud computing or mobile edge computing (MEC) to offload tasks. In this paper, we comprehensively consider both of them and it is an early effort to study the cooperation of cloud computing and MEC in Internet of Things. We start from the single user computation offloading problem, where the MEC resources are not constrained. It can be solved by the branch and bound algorithm. Later on, the multiuser computation offloading problem is formulated as a mixed integer linear programming problem by considering resource competition among mobile users, which is NP-hard. Due to the computation complexity of the formulated problem, we design an iterative heuristic MEC resource allocation algorithm to make the offloading decision dynamically. Simulation results demonstrate that our algorithm outperforms the existing schemes in terms of execution latency and offloading efficiency.

383 citations


Journal ArticleDOI
TL;DR: This review provides useful information and insights to researchers and practitioners who are interested in cybersecurity of IoT, including the current research of IoT cybersecurity, IoT cybersecurity architecture and taxonomy, key enabling countermeasures and strategies, major applications in industries, research trends and challenges.
Abstract: As an emerging technology, the Internet of Things (IoT) revolutionized the global network comprising of people, smart devices, intelligent objects, data, and information. The development of IoT is still in its infancy and many related issues need to be solved. IoT is a unified concept of embedding everything. IoT has a great chance to make the world a higher level of accessibility, integrity, availability, scalability, confidentiality, and interoperability. However, how to protect IoT is a challenging task. System security is the foundation for the development of IoT. This article systematically reviews IoT cybersecurity. The key considerations are the protection and integration of heterogeneous smart devices and information communication technologies (ICT). This review provides useful information and insights to researchers and practitioners who are interested in cybersecurity of IoT, including the current research of IoT cybersecurity, IoT cybersecurity architecture and taxonomy, key enabling countermeasures and strategies, major applications in industries, research trends and challenges.

337 citations


Journal ArticleDOI
TL;DR: An ensemble intrusion detection technique is proposed to mitigate malicious events, in particular botnet attacks against DNS, HTTP, and MQTT protocols utilized in IoT networks, and shows that the proposed features have the potential characteristics of normal and malicious activity.
Abstract: Internet of Things (IoT) plays an increasingly significant role in our daily activities, connecting physical objects around us into digital services. In other words, IoT is the driving force behind home automation, smart cities, modern health systems, and advanced manufacturing. This also increases the likelihood of cyber threats against IoT devices and services. Attackers may attempt to exploit vulnerabilities in application protocols, including Domain Name System (DNS), Hyper Text Transfer Protocol (HTTP) and Message Queue Telemetry Transport (MQTT) that interact directly with backend database systems and client–server applications to store data of IoT services. Successful exploitation of one or more of these protocols can result in data leakage and security breaches. In this paper, an ensemble intrusion detection technique is proposed to mitigate malicious events, in particular botnet attacks against DNS, HTTP, and MQTT protocols utilized in IoT networks. New statistical flow features are generated from the protocols based on an analysis of their potential properties. Then, an AdaBoost ensemble learning method is developed using three machine learning techniques, namely decision tree, Naive Bayes (NB), and artificial neural network, to evaluate the effect of these features and detect malicious events effectively. The UNSW-NB15 and NIMS botnet datasets with simulated IoT sensors’ data are used to extract the proposed features and evaluate the ensemble technique. The experimental results show that the proposed features have the potential characteristics of normal and malicious activity using the correntropy and correlation coefficient measures. Moreover, the proposed ensemble technique provides a higher detection rate and a lower false positive rate compared with each classification technique included in the framework and three other state-of-the-art techniques.

Journal ArticleDOI
TL;DR: A efficient CH election scheme that rotates the CH position among the nodes with higher energy level as compared to other to elect the next group of CHs for the network that suits for IoT applications, such as environmental monitoring, smart cities, and systems is proposed.
Abstract: Wireless sensor networks (WSNs) groups specialized transducers that provide sensing services to Internet of Things (IoT) devices with limited energy and storage resources. Since replacement or recharging of batteries in sensor nodes is almost impossible, power consumption becomes one of the crucial design issues in WSN. Clustering algorithm plays an important role in power conservation for the energy constrained network. Choosing a cluster head (CH) can appropriately balance the load in the network thereby reducing energy consumption and enhancing lifetime. This paper focuses on an efficient CH election scheme that rotates the CH position among the nodes with higher energy level as compared to other. The algorithm considers initial energy, residual energy, and an optimum value of CHs to elect the next group of CHs for the network that suits for IoT applications, such as environmental monitoring, smart cities, and systems. Simulation analysis shows the modified version performs better than the low energy adaptive clustering hierarchy protocol by enhancing the throughput by 60%, lifetime by 66%, and residual energy by 64%.

Journal ArticleDOI
TL;DR: This paper addresses a UAV-aided mobile edge computing system, where a number of ground users are served by a moving UAV equipped with computing resources, and develops a simplified ${l}_{0}$ -norm algorithm with much reduced complexity.
Abstract: Unmanned aerial vehicles (UAVs) have been considered in wireless communication systems to provide high-quality services for their low cost and high maneuverability. This paper addresses a UAV-aided mobile edge computing system, where a number of ground users are served by a moving UAV equipped with computing resources. Each user has computing tasks to complete, which can be separated into two parts: one portion is offloaded to the UAV and the remaining part is implemented locally. The UAV moves around above the ground users and provides computing service in an orthogonal multiple access manner over time. For each time period, we aim to minimize the sum of the maximum delay among all the users in each time slot by jointly optimizing the UAV trajectory, the ratio of offloading tasks, and the user scheduling variables, subject to the discrete binary constraints, the energy consumption constraints, and the UAV trajectory constraints. This problem has highly nonconvex objective function and constraints. Therefore, we equivalently convert it into a better tractable form based on introducing the auxiliary variables, and then propose a novel penalty dual decomposition-based algorithm to handle the resulting problem. Furthermore, we develop a simplified ${l}_{0}$ -norm algorithm with much reduced complexity. Besides, we also extend our algorithm to minimize the average delay. Simulation results illustrate that the proposed algorithms significantly outperform the benchmarks.

Journal ArticleDOI
TL;DR: This paper proposes a three layer intrusion detection system (IDS) that uses a supervised approach to detect a range of popular network based cyber-attacks on IoT networks and demonstrates that the proposed architecture can automatically distinguish between IoT devices on the network, whether network activity is malicious or benign.
Abstract: The proliferation in Internet of Things (IoT) devices, which routinely collect sensitive information, is demonstrated by their prominence in our daily lives. Although such devices simplify and automate every day tasks, they also introduce tremendous security flaws. Current insufficient security measures employed to defend smart devices make IoT the “weakest” link to breaking into a secure infrastructure, and therefore an attractive target to attackers. This paper proposes a three layer intrusion detection system (IDS) that uses a supervised approach to detect a range of popular network based cyber-attacks on IoT networks. The system consists of three main functions: 1) classify the type and profile the normal behavior of each IoT device connected to the network; 2) identifies malicious packets on the network when an attack is occurring; and 3) classifies the type of the attack that has been deployed. The system is evaluated within a smart home testbed consisting of eight popular commercially available devices. The effectiveness of the proposed IDS architecture is evaluated by deploying 12 attacks from 4 main network based attack categories, such as denial of service (DoS), man-in-the-middle (MITM)/spoofing, reconnaissance, and replay. Additionally, the system is also evaluated against four scenarios of multistage attacks with complex chains of events. The performance of the system’s three core functions result in an ${F}$ -measure of: 1) 96.2%; 2) 90.0%; and 3) 98.0%. This demonstrates that the proposed architecture can automatically distinguish between IoT devices on the network, whether network activity is malicious or benign, and detect which attack was deployed on which device connected to the network successfully.

Journal ArticleDOI
TL;DR: This paper designs secure building blocks, such as secure polynomial multiplication and secure comparison, by employing a homomorphic cryptosystem, Paillier, and constructs a secure SVM training algorithm, which requires only two interactions in a single iteration, with no need for a trusted third-party.
Abstract: Machine learning (ML) techniques have been widely used in many smart city sectors, where a huge amount of data is gathered from various (IoT) devices. As a typical ML model, support vector machine (SVM) enables efficient data classification and thereby finds its applications in real-world scenarios, such as disease diagnosis and anomaly detection. Training an SVM classifier usually requires a collection of labeled IoT data from multiple entities, raising great concerns about data privacy. Most of the existing solutions rely on an implicit assumption that the training data can be reliably collected from multiple data providers, which is often not the case in reality. To bridge the gap between ideal assumptions and realistic constraints, in this paper, we propose secureSVM , which is a privacy-preserving SVM training scheme over blockchain-based encrypted IoT data. We utilize the blockchain techniques to build a secure and reliable data sharing platform among multiple data providers, where IoT data is encrypted and then recorded on a distributed ledger. We design secure building blocks, such as secure polynomial multiplication and secure comparison, by employing a homomorphic cryptosystem, Paillier, and construct a secure SVM training algorithm, which requires only two interactions in a single iteration, with no need for a trusted third-party. Rigorous security analysis prove that the proposed scheme ensures the confidentiality of the sensitive data for each data provider as well as the SVM model parameters for data analysts. Extensive experiments demonstrates the efficiency of the proposed scheme.

Journal ArticleDOI
TL;DR: This paper proposes a model permissioned blockchain edge model for smart grid network (PBEM-SGN) to address the two significant issues in smart grid, privacy protections, and energy security, by means of combining blockchain and edge computing techniques.
Abstract: The blooming trend of smart grid deployment is engaged by the evolution of the network technology, as the connected environment offers various alternatives for electrical data collections. Having diverse data sharing/transfer means is deemed an important aspect in enabling intelligent controls/governance in smart grid. However, security and privacy concerns also are introduced while flexible communication services are provided, such as energy depletion and infrastructure mapping attacks. This paper proposes a model permissioned blockchain edge model for smart grid network (PBEM-SGN) to address the two significant issues in smart grid, privacy protections, and energy security, by means of combining blockchain and edge computing techniques. We use group signatures and covert channel authorization techniques to guarantee users’ validity. An optimal security-aware strategy is constructed by smart contracts running on the blockchain. Our experiments have evaluated the effectiveness of the proposed approach.

Journal ArticleDOI
TL;DR: This paper presents a model of the outward transmission of vehicle blockchain data, and gives detail theoretical analysis and numerical results that have shown the potential to guide the application of blockchain for future vehicle networking.
Abstract: The rapid growth of Internet of Vehicles (IoV) has brought huge challenges for large data storage, intelligent management, and information security for the entire system. The traditional centralized management approach for IoV faces the difficulty in dealing with real-time response. The blockchain, as an effective technology for decentralized distributed storage and security management, has already showed great advantages in its application of Bitcoin. In this paper, we investigate how the blockchain technology could be extended to the application of vehicle networking, especially with the consideration of the distributed and secure storage of big data. We define several types of nodes such as vehicle and roadside for vehicle networks and form several sub-blockchain networks. In this paper, we present a model of the outward transmission of vehicle blockchain data, and then give detail theoretical analysis and numerical results. This paper has shown the potential to guide the application of blockchain for future vehicle networking.

Journal ArticleDOI
TL;DR: A comprehensive survey of the existing blockchain protocols for the Internet of Things (IoT) networks is presented in this article, where the authors provide a classification of threat models, which are considered by blockchain protocols in IoT networks, into five main categories, namely identity-based attacks, manipulation based attacks, cryptanalytic attacks, reputation based attacks and service based attacks.
Abstract: This paper presents a comprehensive survey of the existing blockchain protocols for the Internet of Things (IoT) networks. We start by describing the blockchains and summarizing the existing surveys that deal with blockchain technologies. Then, we provide an overview of the application domains of blockchain technologies in IoT, e.g., Internet of Vehicles, Internet of Energy, Internet of Cloud, Edge computing, etc. Moreover, we provide a classification of threat models, which are considered by blockchain protocols in IoT networks, into five main categories, namely identity-based attacks, manipulation-based attacks, cryptanalytic attacks, reputation-based attacks, and service-based attacks. In addition, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving blockchain technologies with respect to the blockchain model, specific security goals, performance, limitations, computation complexity, and communication overhead. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the blockchain technologies for IoT.

Journal ArticleDOI
TL;DR: In this paper, a permissioned energy blockchain system is introduced to implement secure charging services for EVs with the execution of smart contracts, and a reputation-based delegated Byzantine fault tolerance consensus algorithm is proposed to efficiently achieve the consensus in the permissioned blockchain.
Abstract: The smart community (SC), as an important part of the Internet of Energy (IoE), can facilitate integration of distributed renewable energy sources and electric vehicles (EVs) in the smart grid. However, due to the potential security and privacy issues caused by untrusted and opaque energy markets, it becomes a great challenge to optimally schedule the charging behaviors of EVs with distinct energy consumption preferences in SC. In this paper, we propose a contract-based energy blockchain for secure EV charging in SC. First, a permissioned energy blockchain system is introduced to implement secure charging services for EVs with the execution of smart contracts. Second, a reputation-based delegated Byzantine fault tolerance consensus algorithm is proposed to efficiently achieve the consensus in the permissioned blockchain. Third, based on the contract theory, the optimal contracts are analyzed and designed to satisfy EVs’ individual needs for energy sources while maximizing the operator’s utility. Furthermore, a novel energy allocation mechanism is proposed to allocate the limited renewable energy for EVs. Finally, extensive numerical results are carried out to evaluate and demonstrate the effectiveness and efficiency of the proposed scheme through comparison with other conventional schemes.

Journal ArticleDOI
TL;DR: This paper presents a lightweight and privacy-preserving two-factor authentication scheme for IoT devices, where physically uncloneable functions have been considered as one of the authentication factors and is very efficient in terms of computational efficiently.
Abstract: Device authentication is an essential security feature for Internet of Things (IoT). Many IoT devices are deployed in the open and public places, which makes them vulnerable to physical and cloning attacks. Therefore, any authentication protocol designed for IoT devices should be robust even in cases when an IoT device is captured by an adversary. Moreover, many of the IoT devices have limited storage and computational capabilities. Hence, it is desirable that the security solutions for IoT devices should be computationally efficient. To address all these requirements, in this paper, we present a lightweight and privacy-preserving two-factor authentication scheme for IoT devices, where physically uncloneable functions have been considered as one of the authentication factors. Security and performance analysis show that our proposed scheme is not only robust against several attacks, but also very efficient in terms of computational efficiently.

Journal ArticleDOI
TL;DR: An innovative HAR system, exploiting the potential of wearable devices integrated with the skills of deep learning techniques, is presented with the aim of recognizing the most common daily activities of a person at home.
Abstract: Human activity recognition (HAR) is currently recognized as a key element of a more general framework designed to perform continuous monitoring of human behaviors in the area of ambient assisted living (AAL), well-being management, medical diagnosis, elderly care, rehabilitation, entertainment, and surveillance in smart home environments. In this paper, an innovative HAR system, exploiting the potential of wearable devices integrated with the skills of deep learning techniques, is presented with the aim of recognizing the most common daily activities of a person at home. The designed wearable sensor embeds an inertial measurement unit (IMU) and a Wi-Fi section to send data on a cloud service and to allow direct connection to the Internet through a common home router so that the user themselves could manage the installation procedure. The sensor is coupled to a convolutional neural network (CNN) network designed to make inferences with the minimum possible resources to keep open the way of its implementation on low-cost or embedded devices. The system is conceived for daily activity monitor and nine different activities can be highlighted with an accuracy of 97%.

Journal ArticleDOI
TL;DR: Simulation results indicate that the proposed IoT can improve the 5G throughput significantly while the IoT throughput is guaranteed, and a joint optimization algorithm based on Lagrange dual decomposition is proposed to achieve the optimal solution.
Abstract: The shortage of spectrum resources has limited the development of Internet of Things (IoT). Fifth generation (5G) network can flexibly support a variety of devices and services, which makes it possible to combine 5G with IoT. In this paper, a novel multichannel IoT is proposed to dynamically share the spectrum with 5G communication, where an IoT node including transmitter and receiver is designed to perform 5G communication and IoT communication simultaneously. The subchannel sets allocated for 5G communication and IoT communication are defined by two complementary spectrum marker vectors, respectively. Two independent spectrum sequences are generated by calculating the inner products of spectrum marker vectors, presudo-random phases and power scaling vectors. Two time-domain fundamental modulation waveforms generated by the inverse fast Fourier transform of the spectrum sequences are used to modulate 5G data and IoT data, respectively. The receiver can detect the data using the same spectrum marker vectors as the transmitter. The BER performances of the system using binary modulation and cyclic code shift keying modulation in the cases of spectrum marker error and multiple access are analyzed, respectively. A subchannel and power optimization unit is formulated as a joint optimization problem, which seeks to maximize the 5G throughput under the constraints of minimal IoT throughput, maximal power, and maximal interference. An alternative optimization problem is proposed to maximize the IoT throughput while guaranteeing the minimal 5G throughput. A joint optimization algorithm based on Lagrange dual decomposition is proposed to achieve the optimal solution. Simulation results indicate that the proposed IoT can improve the 5G throughput significantly while the IoT throughput is guaranteed.

Journal ArticleDOI
TL;DR: Numerical results show that the proposed joint computation and communication cooperation approach significantly improves the computation capacity and energy efficiency at the user and helper, as compared to other benchmark schemes without such a joint design.
Abstract: This paper proposes a novel user cooperation approach in both computation and communication for mobile edge computing (MEC) systems to improve the energy efficiency for latency-constrained computation. We consider a basic three-node MEC system consisting of a user node, a helper node, and an access point (AP) node attached with an MEC server, in which the user has latency-constrained and computation-intensive tasks to be executed. We consider two different computation offloading models, namely, the partial and binary offloading, respectively. For partial offloading, the tasks at the user are divided into three parts that are executed at the user, helper, and AP, respectively; while for binary offloading, the tasks are executed as a whole only at one of three nodes. Under this setup, we focus on a particular time block and develop an efficient four-slot transmission protocol to enable the joint computation and communication cooperation . Besides the local task computing over the whole block, the user can offload some computation tasks to the helper in the first slot, and the helper cooperatively computes these tasks in the remaining time; while in the second and third slots, the helper works as a cooperative relay to help the user offload some other tasks to the AP for remote execution in the fourth slot. For both cases with partial and binary offloading, we jointly optimize the computation and communication resources allocation at both the user and the helper (i.e., the time and transmit power allocations for offloading, and the central process unit frequencies for computing), so as to minimize their total energy consumption while satisfying the user’s computation latency constraint. Although the two problems are nonconvex in general, we develop efficient algorithms to solve them optimally. Numerical results show that the proposed joint computation and communication cooperation approach significantly improves the computation capacity and energy efficiency at the user and helper, as compared to other benchmark schemes without such a joint design.

Journal ArticleDOI
TL;DR: This work adopts a deep Q-learning approach for designing optimal offloading schemes and proposes an efficient redundant offloading algorithm to improve task offloading reliability in the case of vehicular data transmission failure and evaluates the proposed schemes based on real traffic data.
Abstract: Led by industrialization of smart cities, numerous interconnected mobile devices, and novel applications have emerged in the urban environment, providing great opportunities to realize industrial automation. In this context, autonomous driving is an attractive issue, which leverages large amounts of sensory information for smart navigation while posing intensive computation demands on resource constrained vehicles. Mobile edge computing (MEC) is a potential solution to alleviate the heavy burden on the devices. However, varying states of multiple edge servers as well as a variety of vehicular offloading modes make efficient task offloading a challenge. To cope with this challenge, we adopt a deep Q-learning approach for designing optimal offloading schemes, jointly considering selection of target server and determination of data transmission mode. Furthermore, we propose an efficient redundant offloading algorithm to improve task offloading reliability in the case of vehicular data transmission failure. We evaluate the proposed schemes based on real traffic data. Results indicate that our offloading schemes have great advantages in optimizing system utilities and improving offloading reliability.

Journal ArticleDOI
TL;DR: In this article, a game theoretic approach is used to analyze the computation resource management in the blockchain consensus process as a two-stage Stackelberg game, where the profit of the CFP and the utilities of the individual miners are jointly optimized.
Abstract: Public blockchain networks using proof of work (PoW)-based consensus protocols are considered as a promising platform for decentralized resource management with financial incentive mechanisms. In order to maintain a secured, universal state of the blockchain, PoW-based consensus protocols financially incentivize the nodes in the network to compete for the privilege of block generation through cryptographic puzzle solving. For rational consensus nodes, i.e., miners with limited local computational resources, offloading the computation load for PoW to the cloud/fog providers (CFPs) becomes a viable option. In this paper, we study the interaction between the CFPs and the miners in a PoW-based blockchain network using a game theoretic approach. In particular, we propose a lightweight infrastructure of the PoW-based blockchains, where the computation-intensive part of the consensus process is offloaded to the cloud/fog. We formulate the computation resource management in the blockchain consensus process as a two-stage Stackelberg game, where the profit of the CFP and the utilities of the individual miners are jointly optimized. In the first stage of the game, the CFP sets the price of offered computing resource. In the second stage, the miners decide on the amount of service to purchase accordingly. We apply backward induction to analyze the subgame perfect equilibria in each stage for both uniform and discriminatory pricing schemes. For uniform pricing where the same price applies to all miners, the uniqueness of the Stackelberg equilibrium is validated by identifying the best response strategies of the miners. For discriminatory pricing where the different prices are applied, the uniqueness of the Stackelberg equilibrium is proved by capitalizing on the variational inequality theory. Further, the real experimental results are employed to justify our proposed model.

Journal ArticleDOI
TL;DR: A deep recurrent neural network-based algorithm is proposed to solve the energy efficient resource allocation (RA) problem for the NOMA-based heterogeneous IoT with fast convergence and low computational complexity.
Abstract: The Internet of Things (IoT) has attracted significant attentions in the fifth generation mobile networks and the smart cities. However, considering the large numbers of connectivity demands, it is vital to improve the spectrum efficiency (SE) of the IoT with an affordable power consumption. To improve the SE, the nonorthogonal multiple access (NOMA) technology is newly proposed through accommodating multiple users in the same spectrums. As a result, in this paper, an energy efficient resource allocation (RA) problem is introduced for the NOMA-based heterogeneous IoT. At first, we assume the successive interference cancelation (SIC) is imperfect for practical implementations. Then, based on the analyzing method for cognitive radio networks, we present a stepwise RA scheme for the mobile users and the IoT users with the mutual interference management. Third, we propose a deep recurrent neural network-based algorithm to solve the problem optimally and rapidly. Moreover, a priorities and rate demands-based user scheduling method is supplemented, to coordinate the access of the heterogeneous users with the limited radio resource. At last, the simulation results verify that the deep learning-based scheme is able to provide optimal RA results for the NOMA heterogeneous IoT with fast convergence and low computational complexity. Compared with the conventional orthogonal frequency division multiple access system, the NOMA system with imperfect SIC yields better performance on the SE and the scale of connectivity, at the cost of high power consumption and low energy efficiency.

Journal ArticleDOI
TL;DR: This paper runs a cyber-vulnerability assessment, a literature review of the available intrusion detection solutions using ML models, and demonstrates how a ML-based anomaly detection system can perform well in detecting these attacks.
Abstract: It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of ML in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using ML models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a ML-based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods.

Journal ArticleDOI
TL;DR: This paper formulate the joint load balancing and offloading problem as a mixed integer nonlinear programming problem to maximize system utility and develop a low-complexity algorithm to jointly make VEC server selection, and optimize offloading ratio and computation resource.
Abstract: The emergence of computation intensive and delay sensitive on-vehicle applications makes it quite a challenge for vehicles to be able to provide the required level of computation capacity, and thus the performance. Vehicular edge computing (VEC) is a new computing paradigm with a great potential to enhance vehicular performance by offloading applications from the resource-constrained vehicles to lightweight and ubiquitous VEC servers. Nevertheless, offloading schemes, where all vehicles offload their tasks to the same VEC server, can limit the performance gain due to overload. To address this problem, in this paper, we propose integrating load balancing with offloading, and study resource allocation for a multiuser multiserver VEC system. First, we formulate the joint load balancing and offloading problem as a mixed integer nonlinear programming problem to maximize system utility. Particularly, we take IEEE 802.11p protocol into consideration for modeling the system utility. Then, we decouple the problem as two subproblems and develop a low-complexity algorithm to jointly make VEC server selection, and optimize offloading ratio and computation resource. Numerical results illustrate that the proposed algorithm exhibits fast convergence and demonstrates the superior performance of our joint optimal VEC server selection and offloading algorithm compared to the benchmark solutions.

Journal ArticleDOI
TL;DR: By introducing Healthchain, both IoT data and doctor diagnosis cannot be deleted or tampered with so as to avoid medical disputes, and security analysis and experimental results show that the proposed Healthchain is applicable for smart healthcare system.
Abstract: With the dramatically increasing deployment of the Internet of Things (IoT), remote monitoring of health data to achieve intelligent healthcare has received great attention recently. However, due to the limited computing power and storage capacity of IoT devices, users’ health data are generally stored in a centralized third party, such as the hospital database or cloud, and make users lose control of their health data, which can easily result in privacy leakage and single-point bottleneck. In this paper, we propose Healthchain, a large-scale health data privacy preserving scheme based on blockchain technology, where health data are encrypted to conduct fine-grained access control. Specifically, users can effectively revoke or add authorized doctors by leveraging user transactions for key management. Furthermore, by introducing Healthchain, both IoT data and doctor diagnosis cannot be deleted or tampered with so as to avoid medical disputes. Security analysis and experimental results show that the proposed Healthchain is applicable for smart healthcare system.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the security and privacy effects of eight IoT features including the threats they cause, existing solutions to threats and research challenges yet to be solved, and reveal how IoT features affect existing security research by investigating most existing research works related to IoT security from 2013 to 2017.
Abstract: Internet of Things (IoT) is an increasingly popular technology that enables physical devices, vehicles, home appliances, etc., to communicate and even inter operate with one another. It has been widely used in industrial production and social applications including smart home, healthcare, and industrial automation. While bringing unprecedented convenience, accessibility, and efficiency, IoT has caused acute security and privacy threats in recent years. There are increasing research works to ease these threats, but many problems remain open. To better understand the essential reasons of new IoT threats and the challenges in current research, this survey first proposes the concept of “IoT features.” Then, we discuss the security and privacy effects of eight IoT features including the threats they cause, existing solutions to threats and research challenges yet to be solved. To help researchers follow the up-to-date works in this field, this paper finally illustrates the developing trend of IoT security research and reveals how IoT features affect existing security research by investigating most existing research works related to IoT security from 2013 to 2017.