scispace - formally typeset
Search or ask a question

Showing papers by "Aligarh Muslim University published in 2014"


Journal ArticleDOI
TL;DR: The latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

1,630 citations


Journal ArticleDOI
TL;DR: The ALICE experiment at the CERN Large Hadron Collider as mentioned in this paper continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams.
Abstract: ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.

691 citations


Journal ArticleDOI
TL;DR: Physicochemical characteristics of nanoparticles and engineered nanomaterials including size, shape, chemical composition, physiochemical stability, crystal structure, surface area, surface energy, and surface roughness generally influence the toxic manifestations of these nanom materials.
Abstract: Nanotechnology has emerged as one of the leading fields of the science having tremendous application in diverse disciplines. As nanomaterials are increasingly becoming part of everyday consumer products, it is imperative to assess their impact on living organisms and on the environment. Physicochemical characteristics of nanoparticles and engineered nanomaterials including size, shape, chemical composition, physiochemical stability, crystal structure, surface area, surface energy, and surface roughness generally influence the toxic manifestations of these nanomaterials. This compels the research fraternity to evaluate the role of these properties in determining associated toxicity issues. Reckoning with this fact, in this paper, issues pertaining to the physicochemical properties of nanomaterials as it relates to the toxicity of the nanomaterials are discussed.

531 citations


Journal ArticleDOI
TL;DR: It is suggested that SA induces GB accumulation through increased Met and suppresses ethylene formation under salt stress and enhances antioxidant system resulting in alleviation of adverse effects of salt stress on photosynthesis and growth.

406 citations


Journal ArticleDOI
TL;DR: In this article, comprehensive results on π±, K±, k0 S, p(p) and ¯ Λ(Λ)¯ production at mid-rapidity (0 < yCMS < 0.5) in p-Pb collisions at √sNN = 5.02 TeV, measured by the ALICE detector at the LHC, are reported.

375 citations


Journal ArticleDOI
TL;DR: The present review focuses on enhancing understanding on the mechanism of salinity tolerance via proline and phytohormones with emphasis on phytOHormones interaction with proline under salinity stress.

288 citations


Journal ArticleDOI
Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3, Madan M. Aggarwal4  +989 moreInstitutions (101)
TL;DR: In this paper, the authors measured the transverse momentum spectra of pi(+/-), K-+/- and p((p) over bar) up to p(T) = 20 GeV/c at mid-rapidity in pp, peripheral (60-80%) and central (0-5%) Pb-Pb collisions.

276 citations


Journal ArticleDOI
01 Jan 2014
TL;DR: The production of Ξ− and Ω− baryons and their anti-particles in Pb-Pb collisions at View the MathML source has been measured using the ALICE detector as discussed by the authors.
Abstract: The production of Ξ− and Ω− baryons and their anti-particles in Pb–Pb collisions at View the MathML source has been measured using the ALICE detector The transverse momentum spectra at mid-rapidity (|y|<05) for charged Ξ and Ω hyperons have been studied in the range 06

264 citations


Journal ArticleDOI
Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3, Madan M. Aggarwal4  +1065 moreInstitutions (103)
TL;DR: In this paper, the authors proposed an ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors for detection of heavy-flavour hadrons, and of thermal photons and low-mass di- electrons emitted by the Quark-Gluon Plasma (QGP) at the CERN LHC (Large Hadron Collider).
Abstract: ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high- resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di- electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.

252 citations


Journal ArticleDOI
17 Nov 2014-PLOS ONE
TL;DR: The synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa is described and it is concluded that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens.
Abstract: The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼10–15 nm) has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM). The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.

251 citations


Journal ArticleDOI
TL;DR: The study showed that treatment with NPs is notably effective against the proliferation of HepG2 and MCF-7 cancer cells in a dose-dependent manner, and upregulation of the mRNA expression level of Bax, p53, and caspase-3 and the down regulation of the anti-apoptotic gene Bcl-2 is demonstrated.

Journal ArticleDOI
19 May 2014-PLOS ONE
TL;DR: The findings represent the efficient application of bsAgNPs in plant disease management, indicating the exciting possibilities of nanofungicide employing agriculturally important bacteria.
Abstract: The present study is focused on the extracellular synthesis of silver nanoparticles (AgNPs) using culture supernatant of an agriculturally important bacterium, Serratia sp. BHU-S4 and demonstrates its effective application for the management of spot blotch disease in wheat. The biosynthesis of AgNPs by Serratia sp. BHU-S4 (denoted as bsAgNPs) was monitored by UV–visible spectrum that showed the surface plasmon resonance (SPR) peak at 410 nm, an important characteristic of AgNPs. Furthermore, the structural, morphological, elemental, functional and thermal characterization of bsAgNPs was carried out using the X-ray diffraction (XRD), electron and atomic microscopies, energy dispersive X-ray (EDAX) spectrometer, FTIR spectroscopy and thermogravimetric analyzer (TGA), respectively. The bsAgNPs were spherical in shape with size range of ∼10 to 20 nm. The XRD and EDAX analysis confirmed successful biosynthesis and crystalline nature of AgNPs. The bsAgNPs exhibited strong antifungal activity against Bipolaris sorokiniana, the spot blotch pathogen of wheat. Interestingly, 2, 4 and 10 µg/ml concentrations of bsAgNPs accounted for complete inhibition of conidial germination, whereas in the absence of bsAgNPs, conidial germination was 100%. A detached leaf bioassay revealed prominent conidial germination on wheat leaves infected with B. sorokiniana conidial suspension alone, while the germination of conidia was totally inhibited when the leaves were treated with bsAgNPs. The results were further authenticated under green house conditions, where application of bsAgNPs significantly reduced B. sorokiniana infection in wheat plants. Histochemical staining revealed a significant role of bsAgNPs treatment in inducing lignin deposition in vascular bundles. In summary, our findings represent the efficient application of bsAgNPs in plant disease management, indicating the exciting possibilities of nanofungicide employing agriculturally important bacteria.

Book ChapterDOI
01 Jan 2014
TL;DR: In this article, environmental hazards and health problems associated with chemicals used in textile industry are discussed in this chapter, which are typically those associated with water pollution caused by the discharge of untreated effluent and those because of use of toxic chemicals especially during processing.
Abstract: The textile production industry is one of the oldest and most technologically complex of all industries. The fundamental strength of this industry flows from its strong production base of a wide range of fibers/yarns from natural fibers like cotton, jute, silk, and wool to synthetic/man-made fibers like polyester, viscose, nylon, and acrylic. With escalating demand for textile products, textile mills and their wastewater have been increasing proportionally, causing a major problem of pollution in the world. Many chemicals used in the textile industry cause environmental and health problems. Among the many chemicals in textile wastewater, dyes are considered important pollutants. Worldwide environmental problems associated with the textile industry are typically those associated with water pollution caused by the discharge of untreated effluent and those because of use of toxic chemicals especially during processing. The effluent is of critical environmental concern since it drastically decreases oxygen concentration due to the presence of hydrosulfides and blocks the passage of light through water body which is detrimental to the water ecosystem. Textile effluent is a cause of significant amount of environmental degradation and human illnesses. About 40 % of globally used colorants contain organically bound chlorine, a known carcinogen. Chemicals evaporate into the air we breathe or are absorbed through our skin; they show up as allergic reactions and may cause harm to children even before birth. Due to this chemical pollution, the normal functioning of cells is disturbed and this, in turn, may cause alteration in the physiology and biochemical mechanisms of animals resulting in impairment of important functions like respiration, osmoregulation, reproduction, and even mortality. Heavy metals, present in textile industry effluent, are not biodegradable; hence, they accumulate in primary organs in the body and over time begin to fester, leading to various symptoms of diseases. Thus, untreated or incompletely treated textile effluent can be harmful to both aquatic and terrestrial life by adversely affecting the natural ecosystem and causing long-term health effects. Environmental hazards and health problems associated with chemicals used in textile industry are discussed in this chapter.

Book ChapterDOI
01 Jan 2014
TL;DR: This chapter focuses on the mechanism of P-solubilization and physiological functions of phosphate solubilizers in order to better understand the ecophysiology of PSM and consequently to gather knowledge for managing a sustainable environmental system.
Abstract: Phosphorus (P) is the second important key plant nutrient after nitrogen. An adequate supply of P is therefore required for proper functioning and various metabolisms of plants. Majority of P in soils is fixed, and hence, plant available P is scarcely available despite the abundance of both inorganic and organic P forms in soils. A group of soil microorganisms capable of transforming insoluble P into soluble and plant accessible forms across different genera, collectively called phosphate-solubilizing microorganisms (PSM), have been found as best eco-friendly option for providing inexpensive P to plants. These organisms in addition to supplying soluble P to plants also facilitate the growth of plants by several other mechanisms, for instance, improving the uptake of nutrients and stimulating the production of some phytohormones. Even though several bacterial, fungal and actinomycetal strains have been identified as PSM, the mechanism by which they make P available to plants is poorly understood. This chapter focuses on the mechanism of P-solubilization and physiological functions of phosphate solubilizers in order to better understand the ecophysiology of PSM and consequently to gather knowledge for managing a sustainable environmental system. Conclusively, PSM are likely to serve as an efficient bio-fertilizer especially in areas deficient in P to increase the overall performance of crops.

Journal ArticleDOI
Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3, Madan M. Aggarwal4  +942 moreInstitutions (97)
TL;DR: In this paper, the authors measured the nuclear modification factor in Pb-Pb collisions at root(NN)-N-S = 2.76TeV and showed that a contribution to the nuclear modify factor originates from the charm quark (re) combination in the deconfined partonic medium.

Journal ArticleDOI
TL;DR: An attempt has been made to cover the various aspects mediated by BRs particularly under stress conditions and a possible mechanism of action of BRs has also been suggested.
Abstract: Brassinosteroids (BRs) are polyhydroxylated steroidal plant hormones that play pivotal role in the regulation of various plant growth and development processes. BR biosynthetic or signaling mutants clearly indicate that these plant steroids are essential for regulating a variety of physiological processes including cellular expansion and proliferation, vascular differentiation, male fertility, timing senescence, and leaf development. Moreover, BRs regulate the expression of hundreds of genes, affect the activity of numerous metabolic pathways, and help to control overall developmental programs leading to morphogenesis. On the other hand, the potential application of BRs in agriculture to improve growth and yield under various stress conditions including drought, salinity, extreme temperatures, and heavy metal (Cd, Cu, Al, and Ni) toxicity, is of immense significance as these stresses severely hamper the normal metabolism of plants. Keeping in mind the multifaceted role of BRs, an attempt has been made to cover the various aspects mediated by BRs particularly under stress conditions and a possible mechanism of action of BRs has also been suggested.

Journal ArticleDOI
Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3, Andrew Marshall Adare4  +1054 moreInstitutions (93)
TL;DR: The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019 as mentioned in this paper, which will be achieved by an increase of the Pb-Pb instant luminosity up to 6×1027 cm−2s−1 and running the ALICE detector with the continuous readout at the 50 kHz event rate.
Abstract: ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. These plans are presented in the ALICE Upgrade Letter of Intent, submitted to the LHCC (LHC experiments Committee) in September 2012. In order to fully exploit the physics reach of the LHC in this field, high-precision measurements of the heavy-flavour production, quarkonia, direct real and virtual photons, and jets are necessary. This will be achieved by an increase of the LHC Pb–Pb instant luminosity up to 6×1027 cm−2s−1 and running the ALICE detector with the continuous readout at the 50 kHz event rate. The physics performance accessible with the upgraded detector, together with the main detector modifications, are presented.

Journal ArticleDOI
TL;DR: Application of 200 μL L−1 ethephon to Ni- or Zn-grown plants significantly alleviated toxicity and reduced the oxidative stress to a greater extent together with the improved net photosynthesis due to induced activity of ascorbate peroxidase and glutathione (GSH) reductase, resulting in increased production of reduced GSH.
Abstract: We investigated the influence of exogenously sourced ethylene (200 μL L(-1) ethephon) in the protection of photosynthesis against 200 mg kg(-1) soil each of nickel (Ni)- and zinc (Zn)-accrued stress in mustard (Brassica juncea L.). Plants grown with Ni or Zn but without ethephon exhibited increased activity of 1-aminocyclopropane carboxylic acid synthase, and ethylene with increased oxidative stress measured as H2O2 content and lipid peroxidation compared with control plants. The oxidative stress in Ni-grown plants was higher than Zn-grown plants. Under metal stress, ethylene protected photosynthetic potential by efficient PS II activity and through increased activity of ribulose-1,5-bisphosphate carboxylase and photosynthetic nitrogen use efficiency (P-NUE). Application of 200 μL L(-1) ethephon to Ni- or Zn-grown plants significantly alleviated toxicity and reduced the oxidative stress to a greater extent together with the improved net photosynthesis due to induced activity of ascorbate peroxidase and glutathione (GSH) reductase, resulting in increased production of reduced GSH. Ethylene formation resulting from ethephon application alleviated Ni and Zn stress by reducing oxidative stress caused by stress ethylene production and maintained increased GSH pool. The involvement of ethylene in reversal of photosynthetic inhibition by Ni and Zn stress was related to the changes in PS II activity, P-NUE, and antioxidant capacity was confirmed using ethylene action inhibitor, norbornadiene.

Journal ArticleDOI
TL;DR: The mechanism of interaction between imipenem and HSA was investigated by various techniques like fluorescence, UV, FRET, circular dichroism, urea denaturation, enzyme kinetics, ITC, and molecular docking and found that imipanem binds to HSA at a high affinity site located in subdomain IIIA (Sudlow's site I) and a low affinity site Located in sub domain IIA.
Abstract: The mechanism of interaction between imipenem and HSA was investigated by various techniques like fluorescence, UV.vis absorbance, FRET, circular dichroism, urea denaturation, enzyme kinetics, ITC, and molecular docking. We found that imipenem binds to HSA at a high affinity site located in subdomain IIIA (Sudlow's site I) and a low affinity site located in subdomain IIA.IIB. Electrostatic interactions played a vital role along with hydrogen bonding and hydrophobic interactions in stabilizing the imipenem.HSA complex at subdomain IIIA, while only electrostatic and hydrophobic interactions were present at subdomain IIA.IIB. The binding and thermodynamic parameters obtained by ITC showed that the binding of imipenem to HSA was a spontaneous process (ΔGD⁰(D)= -32.31 kJ mol(-1) for high affinity site and ΔGD⁰(D) = -23.02 kJ mol(-1) for low affinity site) with binding constants in the range of 10(4)-10(5) M(-1). Spectroscopic investigation revealed only one binding site of imipenem on HSA (Ka∼10(4) M(-1)). FRET analysis showed that the binding distance between imipenem and HSA (Trp-214) was optimal (r = 4.32 nm) for quenching to occur. Decrease in esterase-like activity of HSA in the presence of imipenem showed that Arg-410 and Tyr-411 of subdomain IIIA (Sudlow's site II) were directly involved in the binding process. CD spectral analysis showed altered conformation of HSA upon imipenem binding. Moreover, the binding of imipenem to subdomain IIIA (Sudlow's site II) of HSA also affected its folding pathway as clear from urea-induced denaturation studies.

Journal ArticleDOI
Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3, Madan M. Aggarwal4  +981 moreInstitutions (98)
TL;DR: In this article, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of fewparticle correlations in p-Pb collisions.
Abstract: Measurements of multiparticle azimuthal correlations (cumulants) for charged particles in p-Pb at √sNN√=5.02 TeV and Pb-Pb at √sNN=2.76 TeV collisions are presented. They help address the question of whether there is evidence for global, flowlike, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a |Δη| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}≃v2{6}≠0 which is indicative of a Bessel-Gaussian function for the v2 distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a |Δη|>1.4 gap is placed.

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the different mechanisms of metal resistance and plant growth promotion of metal resistant PGPB as well as the recent development in exploitation of these bacteria in bioremediation of heavy metals in different agroecosystems.

Journal ArticleDOI
TL;DR: The effects of nanoparticles on protein and peptide fibrillation processes are explored from both perspectives (ie, as inducers and inhibitors on nucleation kinetics and in the disaggregation of preformed fibrils).
Abstract: Over the past two decades, there has been considerable research interest in the use of nanoparticles in the study of protein and peptide aggregation, and of amyloid-related diseases. The influence of nanoparticles on amyloid formation yields great interest due to its small size and high surface area-to-volume ratio. Targeting nucleation kinetics by nanoparticles is one of the most searched for ways to control or induce this phenomenon. The observed effect of nanoparticles on the nucleation phase is determined by particle composition, as well as the amount and nature of the particle’s surface. Various thermodynamic parameters influence the interaction of proteins and nanoparticles in the solution, and regulate the protein assembly into fibrils, as well as the disaggregation of preformed fibrils. Metals, organic particles, inorganic particles, amino acids, peptides, proteins, and so on are more suitable candidates for nanoparticle formulation. In the present review, we attempt to explore the effects of nanoparticles on protein and peptide fibrillation processes from both perspectives (ie, as inducers and inhibitors on nucleation kinetics and in the disaggregation of preformed fibrils). Their formulation and characterization by different techniques have been also addressed, along with their toxicological effects, both in vivo and in vitro.

Journal ArticleDOI
TL;DR: In this article, high purity of nano-hydroxyapatite powders could be obtained at low temperatures, and the crystallinity, crystallite size and Ca/P ratio of the resulting nanoparticles were found to be dependent on the calcination temperature.

Journal ArticleDOI
04 Sep 2014-PLOS ONE
TL;DR: The results elucidate the significance of P. aeruginosa RL as effective stabilizing agents to develop surface protective ZnO nanoparticles, which can be used as promising antioxidants in biological system.
Abstract: During the last several years, various chemical methods have been used for synthesis of a variety of metal nanoparticles. Most of these methods pose severe environmental problems and biological risks; therefore the present study reports a biological route for synthesis of zinc oxide nanoparticles using Pseudomonas aeruginosa rhamnolipids (RLs) (denoted as RL@ZnO) and their antioxidant property. Formation of stable RL@ZnO nanoparticles gave mostly spherical particles with a particle size ranging from 35 to 80 nm. The RL@ZnO nanoparticles were characterized by UV-visible (UV-vis) spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis. The UV-vis spectra presented a characteristic absorbance peak at ∼ 360 nm for synthesized RL@ZnO nanoparticles. The XRD spectrum showed that RL@ZnO nanoparticles are crystalline in nature and have typical wurtzite type polycrystals. Antioxidant potential of RL@ZnO nanoparticles was assessed through 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and superoxide anion free radicals with varying concentration and time of the storage up to 15 months, while it was found to decline in bare ZnO nanoparticles. Similarly, the inhibitory effects on β-carotene oxidation and lipid peroxidation were also observed. These results elucidate the significance of P. aeruginosa RL as effective stabilizing agents to develop surface protective ZnO nanoparticles, which can be used as promising antioxidants in biological system.

Journal ArticleDOI
TL;DR: Several new therapeutic approaches that have been applied to treat these devastating disorders, including the use of various synthetic and naturally occurring inhibitors are discussed, including modulation of the AGE-RAGE axis is considered promising in the prevention of neurodegenerative diseases.
Abstract: Protein glycation is initiated by a nucleophilic addition reaction between the free amino group from a protein, lipid or nucleic acid and the carbonyl group of a reducing sugar. This reaction forms a reversible Schiff base, which rearranges over a period of days to produce ketoamine or Amadori products. The Amadori products undergo dehydration and rearrangements and develop a cross-link between adjacent proteins, giving rise to protein aggregation or advanced glycation end products (AGEs). A number of studies have shown that glycation induces the formation of the β-sheet structure in β-amyloid protein, α-synuclein, transthyretin (TTR), copper-zinc superoxide dismutase 1 (Cu, Zn-SOD-1), and prion protein. Aggregation of the β-sheet structure in each case creates fibrillar structures, respectively causing Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, familial amyloid polyneuropathy, and prion disease. It has been suggested that oligomeric species of glycated α-synuclein and prion are more toxic than fibrils. This review focuses on the pathway of AGE formation, the synthesis of different types of AGE, and the molecular mechanisms by which glycation causes various types of neurodegenerative disease. It discusses several new therapeutic approaches that have been applied to treat these devastating disorders, including the use of various synthetic and naturally occurring inhibitors. Modulation of the AGE-RAGE axis is now considered promising in the prevention of neurodegenerative diseases. Additionally, the review covers several defense enzymes and proteins in the human body that are important anti-glycating systems acting to prevent the development of neurodegenerative diseases.

Journal ArticleDOI
TL;DR: In this paper, the authors presented the inclusive production cross sections σψ(2S), both integrated and as a function of the transverse momentum pT, for the two ycms domains.
Abstract: The ALICE Collaboration has studied the inclusive production of the charmonium state ψ(2S) in proton-lead (p-Pb) collisions at the nucleon-nucleon centre of mass energy (formula presented.) = 5.02 TeV at the CERN LHC. The measurement was performed at forward (2.03 < ycms< 3.53) and backward (−4.46 < ycms< −2.96) centre of mass rapidities, studying the decays into muon pairs. In this paper, we present the inclusive production cross sections σψ(2S), both integrated and as a function of the transverse momentum pT, for the two ycms domains. The results are compared to those obtained for the 1S vector state (J/ψ), by showing the ratios between the production cross sections, as well as the double ratios [σψ(2S)/σJ/ψ ]pPb/[σψ(2S)/σJ/ψ]pp between p-Pb and proton-proton collisions. Finally, the nuclear modification factor for inclusive ψ(2S) is evaluated and compared to the measurement of the same quantity for J/ψ and to theoretical models including parton shadowing and coherent energy loss mechanisms. The results show a significantly larger suppression of the ψ(2S) compared to that measured for J/ψ and to models. These observations represent a clear indication for sizeable final state effects on ψ(2S) production.[Figure not available: see fulltext.

Journal ArticleDOI
TL;DR: The results suggest that ethylene production determines Cd stress alleviation by S via regulatory interaction with antioxidant metabolism and can be used as a criterion for developing Cd tolerant genotypes.

Journal ArticleDOI
Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3, Madan M. Aggarwal4  +959 moreInstitutions (99)
TL;DR: In this article, the production of prompt charmed mesons relative to the reaction plane was measured in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collision of √sNN=2.76TeV with the ALICE detector at the CERN Large Hadron Collider.
Abstract: The production of the prompt charmed mesons D0, D+, and D*+ relative to the reaction plane was measured in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collision of √sNN=2.76TeV with the ALICE detector at the CERN Large Hadron Collider. D mesons were reconstructed via their hadronic decays at central rapidity in the transverse-momentum (p_T) interval 2–16 GeV/c. The azimuthal anisotropy is quantified in terms of the second coefficient v2 in a Fourier expansion of the D-meson azimuthal distribution and in terms of the nuclear modification factor R_AA, measured in the direction of the reaction plane and orthogonal to it. The v2 coefficient was measured with three different methods and in three centrality classes in the interval 0%–50%. A positive v2 is observed in midcentral collisions (30%–50% centrality class), with a mean value of 0.204+0.099−0.036 (tot. unc.) in the interval 2

Journal ArticleDOI
TL;DR: Out of the two varieties, Varuna was more tolerant than RH-30 to Cd stress, and the activity of antioxidant enzymes and proline accumulation were higher in Varuna with increasing soil level of Cd.

Journal ArticleDOI
Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3, Madan M. Aggarwal4  +941 moreInstitutions (94)
TL;DR: The nuclear modification factor R_{pPb), quantifying the D-meson yield in p-Pb collisions relative to the yield in pp collisions scaled by the number of binary nucleon-nucleon collisions, is compatible within the 15%-20% uncertainties with unity in the transverse momentum interval 1
Abstract: The p_{T}-differential production cross sections of the prompt charmed mesons D^{0}, D^{+}, D^{*+}, and D_{s}^{+} and their charge conjugate in the rapidity interval -0.96