scispace - formally typeset
Search or ask a question
Institution

Argonne National Laboratory

FacilityLemont, Illinois, United States
About: Argonne National Laboratory is a facility organization based out in Lemont, Illinois, United States. It is known for research contribution in the topics: Scattering & Superconductivity. The organization has 28461 authors who have published 64372 publications receiving 2479249 citations. The organization is also known as: ANL & Metallurgical Laboratory.
Topics: Scattering, Superconductivity, Neutron, Thin film, Ion


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations

Journal ArticleDOI
TL;DR: It is shown that performance profiles combine the best features of other tools for performance evaluation to create a single tool for benchmarking and comparing optimization software.
Abstract: We propose performance profiles — distribution functions for a performance metric — as a tool for benchmarking and comparing optimization software. We show that performance profiles combine the best features of other tools for performance evaluation.

3,729 citations

Journal ArticleDOI
20 Sep 2012-Nature
TL;DR: It is shown that heat-carrying phonons with long mean free paths can be scattered by controlling and fine-tuning the mesoscale architecture of nanostructured thermoelectric materials, and an increase in ZT beyond the threshold of 2 highlights the role of, and need for, multiscale hierarchical architecture in controlling phonon scattering in bulk thermoeLECTrics.
Abstract: Controlling the structure of thermoelectric materials on all length scales (atomic, nanoscale and mesoscale) relevant for phonon scattering makes it possible to increase the dimensionless figure of merit to more than two, which could allow for the recovery of a significant fraction of waste heat with which to produce electricity.

3,670 citations

Posted Content
TL;DR: This article reviews the "Grid problem," and presents an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In this article, we define this new field. First, we review the "Grid problem," which we define as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources-what we refer to as virtual organizations. In such settings, we encounter unique authentication, authorization, resource access, resource discovery, and other challenges. It is this class of problem that is addressed by Grid technologies. Next, we present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. We describe requirements that we believe any such mechanisms must satisfy, and we discuss the central role played by the intergrid protocols that enable interoperability among different Grid systems. Finally, we discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. We maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

3,595 citations

Journal ArticleDOI
01 Jun 1997
TL;DR: The Globus system is intended to achieve a vertically integrated treatment of application, middleware, and net work, an integrated set of higher level services that enable applications to adapt to heteroge neous and dynamically changing metacomputing environ ments.
Abstract: The Globus system is intended to achieve a vertically integrated treatment of application, middleware, and net work. A low-level toolkit provides basic mechanisms such as communication, authentication, network information, and data access. These mechanisms are used to con struct various higher level metacomputing services, such as parallel programming tools and schedulers. The long- term goal is to build an adaptive wide area resource environment AWARE, an integrated set of higher level services that enable applications to adapt to heteroge neous and dynamically changing metacomputing environ ments. Preliminary versions of Globus components were deployed successfully as part of the I-WAY networking experiment.

3,450 citations


Authors

Showing all 28631 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jing Wang1844046202769
David A. Weitz1781038114182
Jie Zhang1784857221720
John A. Rogers1771341127390
Hyun-Chul Kim1764076183227
Yang Gao1682047146301
Gang Chen1673372149819
Chad A. Mirkin1641078134254
Rodney S. Ruoff164666194902
Qiang Zhang1611137100950
David Jonathan Hofman1591407140442
Tobin J. Marks1591621111604
Yongsun Kim1562588145619
Mercouri G. Kanatzidis1521854113022
Network Information
Related Institutions (5)
Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Max Planck Society
406.2K papers, 19.5M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
2022343
20212,625
20202,800
20192,695
20182,537