scispace - formally typeset
Search or ask a question

Showing papers by "Argonne National Laboratory published in 2018"


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this paper, the cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies were presented, with good consistency with the standard spatially-flat 6-parameter CDM cosmology having a power-law spectrum of adiabatic scalar perturbations from polarization, temperature, and lensing separately and in combination.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $\Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base $\Lambda$CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $\Omega_c h^2 = 0.120\pm 0.001$, baryon density $\Omega_b h^2 = 0.0224\pm 0.0001$, scalar spectral index $n_s = 0.965\pm 0.004$, and optical depth $\tau = 0.054\pm 0.007$ (in this abstract we quote $68\,\%$ confidence regions on measured parameters and $95\,\%$ on upper limits). The angular acoustic scale is measured to $0.03\,\%$ precision, with $100\theta_*=1.0411\pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$\Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4\pm 0.5)$km/s/Mpc; matter density parameter $\Omega_m = 0.315\pm 0.007$; and matter fluctuation amplitude $\sigma_8 = 0.811\pm 0.006$. We find no compelling evidence for extensions to the base-$\Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{\rm eff} = 2.99\pm 0.17$, and the neutrino mass is tightly constrained to $\sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$\Lambda$CDM at over $2\,\sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$\Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

3,077 citations


Journal ArticleDOI
TL;DR: The main roles of material science in the development of LIBs are discussed, with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.
Abstract: Over the past 30 years, significant commercial and academic progress has been made on Li-based battery technologies. From the early Li-metal anode iterations to the current commercial Li-ion batteries (LIBs), the story of the Li-based battery is full of breakthroughs and back tracing steps. This review will discuss the main roles of material science in the development of LIBs. As LIB research progresses and the materials of interest change, different emphases on the different subdisciplines of material science are placed. Early works on LIBs focus more on solid state physics whereas near the end of the 20th century, researchers began to focus more on the morphological aspects (surface coating, porosity, size, and shape) of electrode materials. While it is easy to point out which specific cathode and anode materials are currently good candidates for the next-generation of batteries, it is difficult to explain exactly why those are chosen. In this review, for the reader a complete developmental story of LIB should be clearly drawn, along with an explanation of the reasons responsible for the various technological shifts. The review will end with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.

2,867 citations


Journal ArticleDOI
TL;DR: This Review evaluates the potential of a series of promising batteries and hydrogen fuel cells in their deployment in automotive electrification and identifies six energy storage and conversion technologies that possess varying combinations of these improved characteristics.
Abstract: Today’s electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome. Recent years have seen significant growth of electric vehicles and extensive development of energy storage technologies. This Review evaluates the potential of a series of promising batteries and hydrogen fuel cells in their deployment in automotive electrification.

1,706 citations


Journal ArticleDOI
TL;DR: This review focuses on studies in humans to describe challenges and propose strategies that leverage existing knowledge to move rapidly from correlation to causation and ultimately to translation into therapies.
Abstract: Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities that are associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes and by mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this review, we focus on studies in humans to describe these challenges and propose strategies that leverage existing knowledge to move rapidly from correlation to causation and ultimately to translation into therapies.

1,359 citations


Journal ArticleDOI
TL;DR: The new ENDF/B-VIII.0 evaluated nuclear reaction data library as mentioned in this paper includes improved thermal neutron scattering data and uses new evaluated data from the CIELO project for neutron reactions on 1 H, 16 O, 56 Fe, 235 U, 238 U and 239 Pu described in companion papers.

1,249 citations


Journal ArticleDOI
TL;DR: Two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences are presented, including the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum information about a Metagenome-Assembled Genomes (MIMAG), including estimates of genome completeness and contamination.
Abstract: We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.

1,171 citations


Journal ArticleDOI
19 Oct 2018-Science
TL;DR: A simple, inexpensive, and scalable phase inversion–based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)HP] coatings with excellent PDRC capability, which equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.
Abstract: Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)HP] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m-2) under solar intensities of 890 and 750 W m-2, respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.

938 citations


Journal ArticleDOI
29 Oct 2018
TL;DR: In this article, Wu et al. reported an efficient oxygen reduction reaction (ORR) catalyst that consists of atomically dispersed nitrogen-coordinated single Mn sites on partially graphitic carbon (Mn-N-C).
Abstract: Platinum group metal (PGM)-free catalysts that are also iron free are highly desirable for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells, as they avoid possible Fenton reactions. Here we report an efficient ORR catalyst that consists of atomically dispersed nitrogen-coordinated single Mn sites on partially graphitic carbon (Mn-N-C). Evidence for the embedding of the atomically dispersed MnN4 moieties within the carbon surface-exposed basal planes was established by X-ray absorption spectroscopy and their dispersion was confirmed by aberration-corrected electron microscopy with atomic resolution. The Mn-N-C catalyst exhibited a half-wave potential of 0.80 V versus the reversible hydrogen electrode, approaching that of Fe-N-C catalysts, along with significantly enhanced stability in acidic media. The encouraging performance of the Mn-N-C catalyst as a PGM-free cathode was demonstrated in fuel cell tests. First-principles calculations further support the MnN4 sites as the origin of the ORR activity via a 4e− pathway in acidic media. Platinum group metal- and iron-free catalysts are highly desirable for the oxygen reduction reaction in proton-exchange membrane fuel cells. Now, Wu and co-workers show a carbon catalyst with atomically dispersed single Mn sites as an efficient catalyst with enhanced stability in acidic media.

920 citations


Journal ArticleDOI
TL;DR: A non-flammable fluorinated electrolyte forms a few-nanometre-thick interface both at the anode and the cathode that stabilizes lithium-metal battery operation with high-voltage cathodes.
Abstract: Rechargeable Li-metal batteries using high-voltage cathodes can deliver the highest possible energy densities among all electrochemistries. However, the notorious reactivity of metallic lithium as well as the catalytic nature of high-voltage cathode materials largely prevents their practical application. Here, we report a non-flammable fluorinated electrolyte that supports the most aggressive and high-voltage cathodes in a Li-metal battery. Our battery shows high cycling stability, as evidenced by the efficiencies for Li-metal plating/stripping (99.2%) for a 5 V cathode LiCoPO4 (~99.81%) and a Ni-rich LiNi0.8Mn0.1Co0.1O2 cathode (~99.93%). At a loading of 2.0 mAh cm−2, our full cells retain ~93% of their original capacities after 1,000 cycles. Surface analyses and quantum chemistry calculations show that stabilization of these aggressive chemistries at extreme potentials is due to the formation of a several-nanometre-thick fluorinated interphase.

840 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the current understanding of the mechanisms that are responsible for combustion-generated nitrogen-containing air pollutants is discussed, along with the chemistry of NO removal processes such as reburning and selective non-catalytic reduction of NO.

796 citations


Journal ArticleDOI
Adam P. Arkin1, Adam P. Arkin2, Robert W. Cottingham3, Christopher S. Henry4, Nomi L. Harris2, Rick Stevens5, Sergei Maslov6, Paramvir S. Dehal2, Doreen Ware7, Fernando Perez, Shane Canon2, Michael W. Sneddon2, Matthew L. Henderson2, William J. Riehl2, Dan Murphy-Olson4, Stephen Y. Chan2, Roy T. Kamimura2, Sunita Kumari7, Meghan M Drake3, Thomas Brettin4, Elizabeth M. Glass4, Dylan Chivian2, Dan Gunter2, David J. Weston3, Benjamin H. Allen3, Jason K. Baumohl2, Aaron A. Best8, Benjamin P. Bowen2, Steven E. Brenner1, Christopher Bun4, John-Marc Chandonia2, Jer Ming Chia7, R. L. Colasanti4, Neal Conrad4, James J. Davis4, Brian H. Davison3, Matthew DeJongh8, Scott Devoid4, Emily M. Dietrich4, Inna Dubchak2, Janaka N. Edirisinghe4, Janaka N. Edirisinghe5, Gang Fang9, José P. Faria4, Paul M. Frybarger4, Wolfgang Gerlach4, Mark Gerstein9, Annette Greiner2, James Gurtowski7, Holly L. Haun3, Fei He6, Rashmi Jain2, Rashmi Jain10, Marcin P. Joachimiak2, Kevin P. Keegan4, Shinnosuke Kondo8, Vivek Kumar7, Miriam Land3, Folker Meyer4, Mark Mills3, Pavel S. Novichkov2, Taeyun Oh2, Taeyun Oh10, Gary J. Olsen11, Robert Olson4, Bruce Parrello4, Shiran Pasternak7, Erik Pearson2, Sarah S. Poon2, Gavin Price2, Srividya Ramakrishnan7, Priya Ranjan3, Priya Ranjan12, Pamela C. Ronald10, Pamela C. Ronald2, Michael C. Schatz7, Samuel M. D. Seaver4, Maulik Shukla4, Roman A. Sutormin2, Mustafa H Syed3, James Thomason7, Nathan L. Tintle8, Daifeng Wang9, Fangfang Xia4, Hyunseung Yoo4, Shinjae Yoo6, Dantong Yu6 
TL;DR: Author(s): Arkin, Adam P; Cottingham, Robert W; Henry, Christopher S; Harris, Nomi L; Stevens, Rick L; Maslov, Sergei; Dehal, Paramvir; Ware, Doreen; Perez, Fernando; Canon, Shane; Sneddon, Michael W; Henderson, Matthew L; Riehl, William J; Murphy-Olson, Dan; Chan, Stephen Y; Kamimura, Roy T.
Abstract: Author(s): Arkin, Adam P; Cottingham, Robert W; Henry, Christopher S; Harris, Nomi L; Stevens, Rick L; Maslov, Sergei; Dehal, Paramvir; Ware, Doreen; Perez, Fernando; Canon, Shane; Sneddon, Michael W; Henderson, Matthew L; Riehl, William J; Murphy-Olson, Dan; Chan, Stephen Y; Kamimura, Roy T; Kumari, Sunita; Drake, Meghan M; Brettin, Thomas S; Glass, Elizabeth M; Chivian, Dylan; Gunter, Dan; Weston, David J; Allen, Benjamin H; Baumohl, Jason; Best, Aaron A; Bowen, Ben; Brenner, Steven E; Bun, Christopher C; Chandonia, John-Marc; Chia, Jer-Ming; Colasanti, Ric; Conrad, Neal; Davis, James J; Davison, Brian H; DeJongh, Matthew; Devoid, Scott; Dietrich, Emily; Dubchak, Inna; Edirisinghe, Janaka N; Fang, Gang; Faria, Jose P; Frybarger, Paul M; Gerlach, Wolfgang; Gerstein, Mark; Greiner, Annette; Gurtowski, James; Haun, Holly L; He, Fei; Jain, Rashmi; Joachimiak, Marcin P; Keegan, Kevin P; Kondo, Shinnosuke; Kumar, Vivek; Land, Miriam L; Meyer, Folker; Mills, Marissa; Novichkov, Pavel S; Oh, Taeyun; Olsen, Gary J; Olson, Robert; Parrello, Bruce; Pasternak, Shiran; Pearson, Erik; Poon, Sarah S; Price, Gavin A; Ramakrishnan, Srividya; Ranjan, Priya; Ronald, Pamela C; Schatz, Michael C; Seaver, Samuel MD; Shukla, Maulik; Sutormin, Roman A; Syed, Mustafa H; Thomason, James; Tintle, Nathan L; Wang, Daifeng; Xia, Fangfang; Yoo, Hyunseung; Yoo, Shinjae; Yu, Dantong

Journal ArticleDOI
TL;DR: It is demonstrated that viscoelasticity can reduce turbulence and suppress cavitation, and subsequently increase the injector’s volumetric efficiency.
Abstract: We identify the physical mechanism through which newly developed quaternary ammonium salt (QAS) deposit control additives (DCAs) affect the rheological properties of cavitating turbulent flows, resulting in an increase in the volumetric efficiency of clean injectors fuelled with diesel or biodiesel fuels. Quaternary ammonium surfactants with appropriate counterions can be very effective in reducing the turbulent drag in aqueous solutions, however, less is known about the effect of such surfactants in oil-based solvents or in cavitating flow conditions. Small-angle neutron scattering (SANS) investigations show that in traditional DCA fuel compositions only reverse spherical micelles form, whereas reverse cylindrical micelles are detected by blending the fuel with the QAS additive. Moreover, experiments utilising X-ray micro computed tomography (micro-CT) in nozzle replicas, quantify that in cavitation regions the liquid fraction is increased in the presence of the QAS additive. Furthermore, high-flux X-ray phase contrast imaging (XPCI) measurements identify a flow stabilization effect in the region of vortex cavitation by the QAS additive. The effect of the formation of cylindrical micelles is reproduced with computational fluid dynamics (CFD) simulations by including viscoelastic characteristics for the flow. It is demonstrated that viscoelasticity can reduce turbulence and suppress cavitation, and subsequently increase the injector’s volumetric efficiency.

Journal ArticleDOI
TL;DR: In this article, the authors review recent progress in impurity systems such as colour centres in diamond and silicon carbide, rare-earth ions in solids and donors in silicon and project a possible path to chip-scale quantum technologies through sustained advances in nanofabrication, quantum control and materials engineering.
Abstract: Spins of impurities in solids provide a unique architecture to realize quantum technologies. A quantum register of electron and nearby nuclear spins in the lattice encompasses high-fidelity state manipulation and readout, long-lived quantum memory, and long-distance transmission of quantum states by optical transitions that coherently connect spins and photons. These features, combined with solid-state device engineering, establish impurity spins as promising resources for quantum networks, information processing and sensing. Focusing on optical methods for the access and connectivity of single spins, we review recent progress in impurity systems such as colour centres in diamond and silicon carbide, rare-earth ions in solids and donors in silicon. We project a possible path to chip-scale quantum technologies through sustained advances in nanofabrication, quantum control and materials engineering.

Journal ArticleDOI
TL;DR: In this article, a highperforming electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs) is reported.
Abstract: For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal−organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm−3 and high areal capacitances over 20 F cm−2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications. Metal–organic frameworks (MOFs) are attractive electrodes for supercapacitors but generally suffer from low electric conductivity and chemical stability. Here the authors report stable conductive MOFs based on hexaminobenzene linker with volumetric and areal capacitances in excess of 700 F per cm3 and 15 F per cm2, respectively.

Journal ArticleDOI
TL;DR: In this paper, a concentrated ether electrolyte that enables long-term cycling stability of high-voltage Li metal batteries was developed, which is a promising approach to enable ether-based electrolytes for high voltage Li metal battery applications.
Abstract: The key to enabling long-term cycling stability of high-voltage lithium (Li) metal batteries is the development of functional electrolytes that are stable against both Li anodes and high-voltage (above 4 V versus Li/Li+) cathodes. Due to their limited oxidative stability ( 90% over 300 cycles and ~80% over 500 cycles with a charge cut-off voltage of 4.3 V. This study offers a promising approach to enable ether-based electrolytes for high-voltage Li metal battery applications. Ether-based electrolytes offer many advantages compared to other electrolyte systems, but they are not stable in Li metal batteries when operating at high voltages. Here, the authors develop a concentrated ether electrolyte that enables long-term cycling stability of high-voltage Li metal batteries.

Journal ArticleDOI
14 Dec 2018-Science
TL;DR: A method of preparing highly active yet stable electrocatalysts containing ultralow-loading platinum content by using cobalt or bimetallic cobalt and zinc zeolitic imidazolate frameworks as precursors is described.
Abstract: Achieving high catalytic performance with the lowest amount of platinum is critical in fuel cell cost reduction. We describe a method of preparing highly active yet stable electrocatalysts containing ultralow Pt content using Co or Co/Zn zeolitic imidazolate frameworks as precursors. Synergistic catalysis between strained Pt-Co core-shell nanoparticles over a platinum-group-metal-free (PGM-free) catalytic substrate led to excellent fuel cell performance under 1 atmosphere of O 2 or air at both high voltage and high current domains. Two catalysts achieved the oxygen reduction reaction (ORR) mass activities of 1.08 A mg Pt −1 /1.77 A mg Pt −1 and retained 64%/15% of initial values after 30,000 voltage cycles in fuel cell. Computational modeling reveals that the interaction between Pt-Co and PGM-free sites improves ORR activity and durability.

Journal ArticleDOI
TL;DR: In this paper, a mixed-ligand strategy was proposed to achieve high-content single-atom (SA) iron-implanted N-doped porous carbon (FeSA -N-C) via pyrolysis.
Abstract: It remains highly desired but a great challenge to achieve atomically dispersed metals in high loadings for efficient catalysis. Now porphyrinic metal-organic frameworks (MOFs) have been synthesized based on a novel mixed-ligand strategy to afford high-content (1.76 wt %) single-atom (SA) iron-implanted N-doped porous carbon (FeSA -N-C) via pyrolysis. Thanks to the single-atom Fe sites, hierarchical pores, oriented mesochannels and high conductivity, the optimized FeSA -N-C exhibits excellent oxygen reduction activity and stability, surpassing almost all non-noble-metal catalysts and state-of-the-art Pt/C, in both alkaline and more challenging acidic media. More far-reaching, this MOF-based mixed-ligand strategy opens a novel avenue to the precise fabrication of efficient single-atom catalysts.

Journal ArticleDOI
TL;DR: Two new series of hybrid two-dimensional (2D) perovskites that adopt the Dion-Jacobson (DJ) structure type are presented, which are the first complete homologous series reported in halide perovkite chemistry.
Abstract: The three-dimensional hybrid organic–inorganic perovskites have shown huge potential for use in solar cells and other optoelectronic devices. Although these materials are under intense investigation, derivative materials with lower dimensionality are emerging, offering higher tunability of physical properties and new capabilities. Here, we present two new series of hybrid two-dimensional (2D) perovskites that adopt the Dion–Jacobson (DJ) structure type, which are the first complete homologous series reported in halide perovskite chemistry. Lead iodide DJ perovskites adopt a general formula A′An–1PbnI3n+1 (A′ = 3-(aminomethyl)piperidinium (3AMP) or 4-(aminomethyl)piperidinium (4AMP), A = methylammonium (MA)). These materials have layered structures where the stacking of inorganic layers is unique as they lay exactly on top of another. With a slightly different position of the functional group in the templating cation 3AMP and 4AMP, the as-formed DJ perovskites show different optical properties, with the 3A...

Journal ArticleDOI
TL;DR: In this paper, the average valence state of each type of transition metal cation is continuously reduced, which is attributed to oxygen release from the LMR material, and surface coating and modification methods are suggested to suppress the voltage fade through reducing the oxygen release.
Abstract: Voltage fade is a major problem in battery applications for high-energy lithium- and manganese-rich (LMR) layered materials. As a result of the complexity of the LMR structure, the voltage fade mechanism is not well understood. Here we conduct both in situ and ex situ studies on a typical LMR material (Li1.2Ni0.15Co0.1Mn0.55O2) during charge–discharge cycling, using multi-length-scale X-ray spectroscopic and three-dimensional electron microscopic imaging techniques. Through probing from the surface to the bulk, and from individual to whole ensembles of particles, we show that the average valence state of each type of transition metal cation is continuously reduced, which is attributed to oxygen release from the LMR material. Such reductions activate the lower-voltage Mn3+/Mn4+ and Co2+/Co3+ redox couples in addition to the original redox couples including Ni2+/Ni3+, Ni3+/Ni4+ and O2−/O−, directly leading to the voltage fade. We also show that the oxygen release causes microstructural defects such as the formation of large pores within particles, which also contributes to the voltage fade. Surface coating and modification methods are suggested to be effective in suppressing the voltage fade through reducing the oxygen release. Voltage decay is a major problem in applications of high-energy Li- and Mn-rich layer-structured battery materials. Here, the authors report the evolution of redox couples as the origin of the voltage decay and discuss strategies to suppress the problem.

Journal ArticleDOI
26 Jun 2018
TL;DR: The utility of the living data resource and cross-cohort comparison is demonstrated to confirm existing associations between the microbiome and psychiatric illness and to reveal the extent of microbiome change within one individual during surgery, providing a paradigm for open microbiome research and education.
Abstract: Although much work has linked the human microbiome to specific phenotypes and lifestyle variables, data from different projects have been challenging to integrate and the extent of microbial and molecular diversity in human stool remains unknown. Using standardized protocols from the Earth Microbiome Project and sample contributions from over 10,000 citizen-scientists, together with an open research network, we compare human microbiome specimens primarily from the United States, United Kingdom, and Australia to one another and to environmental samples. Our results show an unexpected range of beta-diversity in human stool microbiomes compared to environmental samples; demonstrate the utility of procedures for removing the effects of overgrowth during room-temperature shipping for revealing phenotype correlations; uncover new molecules and kinds of molecular communities in the human stool metabolome; and examine emergent associations among the microbiome, metabolome, and the diversity of plants that are consumed (rather than relying on reductive categorical variables such as veganism, which have little or no explanatory power). We also demonstrate the utility of the living data resource and cross-cohort comparison to confirm existing associations between the microbiome and psychiatric illness and to reveal the extent of microbiome change within one individual during surgery, providing a paradigm for open microbiome research and education. IMPORTANCE We show that a citizen science, self-selected cohort shipping samples through the mail at room temperature recaptures many known microbiome results from clinically collected cohorts and reveals new ones. Of particular interest is integrating n = 1 study data with the population data, showing that the extent of microbiome change after events such as surgery can exceed differences between distinct environmental biomes, and the effect of diverse plants in the diet, which we confirm with untargeted metabolomics on hundreds of samples.

Journal ArticleDOI
TL;DR: In situ Raman and electroanalysis studies suggest the origin of the high selectivity toward C2 products to be a combined effect of the enhanced stabilization of the Cu2O overlayer and the optimal availability of the CO intermediate due to the Ag incorporated in the alloy.
Abstract: Electrodeposition of CuAg alloy films from plating baths containing 3,5-diamino-1,2,4-triazole (DAT) as an inhibitor yields high surface area catalysts for the active and selective electroreduction of CO2 to multicarbon hydrocarbons and oxygenates. EXAFS shows the co-deposited alloy film to be homogeneously mixed. The alloy film containing 6% Ag exhibits the best CO2 electroreduction performance, with the Faradaic efficiency for C2H4 and C2H5OH production reaching nearly 60 and 25%, respectively, at a cathode potential of just −0.7 V vs RHE and a total current density of ∼ – 300 mA/cm2. Such high levels of selectivity at high activity and low applied potential are the highest reported to date. In situ Raman and electroanalysis studies suggest the origin of the high selectivity toward C2 products to be a combined effect of the enhanced stabilization of the Cu2O overlayer and the optimal availability of the CO intermediate due to the Ag incorporated in the alloy.

Journal ArticleDOI
06 Apr 2018-Science
TL;DR: Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%.
Abstract: Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.

Journal ArticleDOI
25 Jul 2018-Nature
TL;DR: Micrometre-sized particles of two niobium tungsten oxides have high volumetric capacities and rate performances, enabled by very high lithium-ion diffusion coefficients.
Abstract: The maximum power output and minimum charging time of a lithium-ion battery depend on both ionic and electronic transport. Ionic diffusion within the electrochemically active particles generally represents a fundamental limitation to the rate at which a battery can be charged and discharged. To compensate for the relatively slow solid-state ionic diffusion and to enable high power and rapid charging, the active particles are frequently reduced to nanometre dimensions, to the detriment of volumetric packing density, cost, stability and sustainability. As an alternative to nanoscaling, here we show that two complex niobium tungsten oxides-Nb16W5O55 and Nb18W16O93, which adopt crystallographic shear and bronze-like structures, respectively-can intercalate large quantities of lithium at high rates, even when the sizes of the niobium tungsten oxide particles are of the order of micrometres. Measurements of lithium-ion diffusion coefficients in both structures reveal room-temperature values that are several orders of magnitude higher than those in typical electrode materials such as Li4Ti5O12 and LiMn2O4. Multielectron redox, buffered volume expansion, topologically frustrated niobium/tungsten polyhedral arrangements and rapid solid-state lithium transport lead to extremely high volumetric capacities and rate performance. Unconventional materials and mechanisms that enable lithiation of micrometre-sized particles in minutes have implications for high-power applications, fast-charging devices, all-solid-state energy storage systems, electrode design and material discovery.

Journal ArticleDOI
TL;DR: In this paper, a review article mainly focuses on research activities with regard to the dissolution-migration-deposition (DMD) process in transition metal-based cathode materials.
Abstract: Unlike the revolutionary advances in the anodes of lithium-ion batteries from Li intercalation materials to Li alloy and/or conversion reaction materials, the development of the cathode is still dominated by the Li intercalation compounds. Transition metal ions are essential in these cathodes as the rapid redox reaction centers, and one of the biggest challenges for the TM-based cathodes is the capacity and power fading especially at an elevated temperature, which is directly associated with the dissolution–migration–deposition (DMD) process of TMs from the cathode materials. This process not only alters the surface structure of the cathode materials, but more importantly, changes the SEI composition at the anode side. There is no doubt that the TM-DMD issue should be addressed thoroughly to unlock the potential of these compounds to enable a prolonged battery lifetime. This review article mainly focuses on research activities with regard to the DMD process in TM-based cathode materials. In the first four sections, we choose Mn-based cathodes as an example to discuss how Mn DMD relates to the capacity fade of the cell, and what possible approaches might suppress the DMD process by modification of the electrode or electrolyte. In the fifth section, we discuss the TM DMD process in Ni-, Co-, Fe- and V-containing cathode materials. This article reviews the frontier electrochemical research on TM-based cathodes and summarizes the progress and challenges, thereby helping to advance future R&D of LIBs.

Journal ArticleDOI
T. M. C. Abbott, Filipe B. Abdalla1, Filipe B. Abdalla2, S. Allam3  +220 moreInstitutions (50)
TL;DR: The first public data release of the DES DR1 dataset is described in this paper, consisting of reduced single-epoch images, co-add images, and co-added source catalogs, and associated products and services.
Abstract: We describe the first public data release of the Dark Energy Survey, DES DR1, consisting of reduced single-epoch images, co-added images, co-added source catalogs, and associated products and services assembled over the first 3 yr of DES science operations. DES DR1 is based on optical/near-infrared imaging from 345 distinct nights (2013 August to 2016 February) by the Dark Energy Camera mounted on the 4 m Blanco telescope at the Cerro Tololo InterAmerican Observatory in Chile. We release data from the DES wide-area survey covering similar to 5000 deg(2) of the southern Galactic cap in five broad photometric bands, grizY. DES DR1 has a median delivered point-spread function of g = 1.12, r = 0.96, i = 0.88, z = 0.84, and Y = 0.'' 90 FWHM, a photometric precision of <1% in all bands, and an astrometric precision of 151 mas. The median co-added catalog depth for a 1.'' 95 diameter aperture at signal-to-noise ratio (S/N) = 10 is g = 24.33, r = 24.08, i = 23.44, z = 22.69, and Y = 21.44 mag. DES DR1 includes nearly 400 million distinct astronomical objects detected in similar to 10,000 co-add tiles of size 0.534 deg(2) produced from similar to 39,000 individual exposures. Benchmark galaxy and stellar samples contain similar to 310 million and similar to 80 million objects, respectively, following a basic object quality selection. These data are accessible through a range of interfaces, including query web clients, image cutout servers, jupyter notebooks, and an interactive co-add image visualization tool. DES DR1 constitutes the largest photometric data set to date at the achieved depth and photometric precision.


Journal ArticleDOI
TL;DR: The MiniBooNE data are consistent in energy and magnitude with the excess of events reported by the Liquid Scintillator Neutrino Detector (LSND), and the significance of the combined LSND and Mini BooNE excesses is 6.0σ.
Abstract: The MiniBooNE experiment at Fermilab reports results from an analysis of ν_{e} appearance data from 12.84×10^{20} protons on target in neutrino mode, an increase of approximately a factor of 2 over previously reported results. A ν_{e} charged-current quasielastic event excess of 381.2±85.2 events (4.5σ) is observed in the energy range 200

Journal ArticleDOI
01 Apr 2018-Nature
TL;DR: A strategy of combining high-valent cations and the partial substitution of fluorine for oxygen in a disordered-rocksalt structure to incorporate the reversible Mn2+/Mn4+ double redox couple into lithium-excess cathode materials is presented.
Abstract: There is an urgent need for low-cost, resource-friendly, high-energy-density cathode materials for lithium-ion batteries to satisfy the rapidly increasing need for electrical energy storage. To replace the nickel and cobalt, which are limited resources and are associated with safety problems, in current lithium-ion batteries, high-capacity cathodes based on manganese would be particularly desirable owing to the low cost and high abundance of the metal, and the intrinsic stability of the Mn4+ oxidation state. Here we present a strategy of combining high-valent cations and the partial substitution of fluorine for oxygen in a disordered-rocksalt structure to incorporate the reversible Mn2+/Mn4+ double redox couple into lithium-excess cathode materials. The lithium-rich cathodes thus produced have high capacity and energy density. The use of the Mn2+/Mn4+ redox reduces oxygen redox activity, thereby stabilizing the materials, and opens up new opportunities for the design of high-performance manganese-rich cathodes for advanced lithium-ion batteries.

Journal ArticleDOI
03 Mar 2018
TL;DR: In this article, the authors present the recent progresses and challenges in discovery of high-performance anode materials for Li-ion batteries related to their applications in future electrical vehicles and grid energy storage.
Abstract: Transformational changes in battery technologies are critically needed to enable the effective use of renewable energy sources, such as solar and wind, and to allow for the expansion of the electrification of vehicles. Developing high-performance batteries is critical to meet these requirements, which certainly relies on material breakthroughs. This review article presents the recent progresses and challenges in discovery of high-performance anode materials for Li-ion batteries related to their applications in future electrical vehicles and grid energy storage. The advantages and disadvantages of a series of anode materials are highlighted.

Journal ArticleDOI
TL;DR: It is theoretically shown that isolated flat moiré bands described by generalized triangular lattice Hubbard models are present in twisted transition metal dichalcogenide heterobilayers.
Abstract: Flexible long period moir\'e superlattices form in two-dimensional van der Waals crystals containing layers that differ slightly in lattice constant or orientation. In this Letter we show theoretically that isolated flat moir\'e bands described by generalized triangular lattice Hubbard models are present in twisted transition metal dichalcogenide heterobilayers. The hopping and interaction strength parameters of the Hubbard model can be tuned by varying the twist angle and the three-dimensional dielectric environment. When the flat moir\'e bands are partially filled, candidate many-body ground states at some special filling factors include spin-liquid states, quantum anomalous Hall insulators, and chiral $d$-wave superconductors.