scispace - formally typeset
Search or ask a question

Showing papers by "Argonne National Laboratory published in 2020"


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations


Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations


Journal ArticleDOI
24 Apr 2020-ACS Nano
TL;DR: Overall, it is found that combinations of various commonly available fabrics used in cloth masks can potentially provide significant protection against the transmission of aerosol particles.
Abstract: The emergence of a pandemic affecting the respiratory system can result in a significant demand for face masks. This includes the use of cloth masks by large sections of the public, as can be seen ...

714 citations


Journal ArticleDOI
Gilberto Pastorello1, Carlo Trotta2, E. Canfora2, Housen Chu1  +300 moreInstitutions (119)
TL;DR: The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe, and is detailed in this paper.
Abstract: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

681 citations


Journal ArticleDOI
21 Aug 2020-Science
TL;DR: Successful synthesis of MXenes with oxygen, imido, sulfur, chlorine, selenium, bromine, and tellurium surface terminations, as well as bare MXenes (no surface termination), was demonstrated.
Abstract: Versatile chemical transformations of surface functional groups in 2D transition-metal carbides (MXenes) open up a new design space for this broad class of functional materials. We introduce a general strategy to install and remove surface groups by performing substitution and elimination reactions in molten inorganic salts. Successful synthesis of MXenes with O, NH, S, Cl, Se, Br, and Te surface terminations, as well as bare MXenes (no surface termination) was demonstrated. These MXenes show distinctive structural and electronic properties. For example, the surface groups control interatomic distances in the MXene lattice, and Tin+1Cn (n = 1, 2) MXenes terminated with Te2− ligands show a giant, (>18%) in-plane lattice expansion compared to the bulk TiC lattice. Nb2C MXenes exhibited surface-group-dependent superconductivity.

667 citations


Journal ArticleDOI
TL;DR: A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented, which include fragmentation methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory.
Abstract: A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.

575 citations


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +213 moreInstitutions (66)
TL;DR: In this article, the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release are described, with a hybrid method using different approximations at low (l ǫ ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases.
Abstract: We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (l ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the ΛCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low-l data and the high-l temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ . We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the ΛCDM constraints on the parameters θ MC , ω c , ω b , and H 0 by more than 30%, and ns by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 σ level on the ΛCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 σ levels we achieved in 2015 for the temperature data alone on ΛCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit ΛCDM parameters for the l > 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.

523 citations


Journal ArticleDOI
TL;DR: In this paper, a copper-incorporated crystalline 3,4,9,10-perylenetetetracarboxylic dianhydride was used to synthesize ammonia from nitrate ions.
Abstract: Ammonia (NH3) is essential for modern agriculture and industry and is a potential energy carrier. NH3 is traditionally synthesized by the Haber–Bosch process at high temperature and pressure. The high-energy input of this process has motivated research into electrochemical NH3 synthesis via nitrogen (N2)–water reactions under ambient conditions. However, the future of this low-cost process is compromised by the low yield rate and poor selectivity, ascribed to the inert N≡N bond and ultralow solubility of N2. Obtaining NH3 directly from non-N2 sources could circumvent these challenges. Here we report the eight-electron direct electroreduction of nitrate to NH3 catalysed by copper-incorporated crystalline 3,4,9,10-perylenetetracarboxylic dianhydride. The catalyst exhibits an NH3 production rate of 436 ± 85 μg h−1 cm−2 and a maximum Faradaic efficiency of 85.9% at −0.4 V versus a reversible hydrogen electrode. This notable performance is achieved by the catalyst regulating the transfer of protons and/or electrons to the copper centres and suppressing hydrogen production. Electrochemically reducing nitrogen-containing molecules could provide less energy-intense routes to produce ammonia than the traditional Haber–Bosh process. Here the authors use a catalyst comprising Cu embedded in an organic molecular solid to synthesize ammonia from nitrate ions.

514 citations


Journal ArticleDOI
TL;DR: This review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal-air batteries over the past few years, which identified the key problems and guides directions to solve them.
Abstract: The goal of limiting global warming to 1.5 °C requires a drastic reduction in CO2 emissions across many sectors of the world economy. Batteries are vital to this endeavor, whether used in electric vehicles, to store renewable electricity, or in aviation. Present lithium-ion technologies are preparing the public for this inevitable change, but their maximum theoretical specific capacity presents a limitation. Their high cost is another concern for commercial viability. Metal-air batteries have the highest theoretical energy density of all possible secondary battery technologies and could yield step changes in energy storage, if their practical difficulties could be overcome. The scope of this review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal-air batteries over the past few years, which identified the key problems and guides directions to solve them. We focus primarily on the challenges and outlook for Li-O2 cells but include Na-O2, K-O2, and Mg-O2 cells for comparison. Our review highlights the interdisciplinary nature of this field that involves a combination of materials chemistry, electrochemistry, computation, microscopy, spectroscopy, and surface science. The mechanisms of O2 reduction and evolution are considered in the light of recent findings, along with developments in positive and negative electrodes, electrolytes, electrocatalysis on surfaces and in solution, and the degradative effect of singlet oxygen, which is typically formed in Li-O2 cells.

501 citations


Journal ArticleDOI
TL;DR: An overview of the recently developed capabilities of the DFTB+ code is given, demonstrating with a few use case examples, and the strengths and weaknesses of the various features are discussed, to discuss on-going developments and possible future perspectives.
Abstract: DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism for treating excited systems, electron transport using non-equilibrium Green’s functions, and many more. DFTB+ can be used as a user-friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future perspectives.

491 citations


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +202 moreInstitutions (63)
TL;DR: In this article, the authors presented an extensive set of tests of the robustness of the lensing-potential power spectrum, and constructed a minimum-variance estimator likelihood over lensing multipoles 8.
Abstract: We present measurements of the cosmic microwave background (CMB) lensing potential using the final Planck 2018 temperature and polarization data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization maps from 5σ to 9σ . Combined with temperature, lensing is detected at 40σ . We present an extensive set of tests of the robustness of the lensing-potential power spectrum, and construct a minimum-variance estimator likelihood over lensing multipoles 8 ≤ L ≤ 400 (extending the range to lower L compared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the results from the Planck CMB power spectra within the ΛCDM model. Combined with baryon density and other weak priors, the lensing analysis alone constrains (1σ errors). Also combining with baryon acoustic oscillation data, we find tight individual parameter constraints, σ 8 = 0.811 ± 0.019, , and . Combining with Planck CMB power spectrum data, we measure σ 8 to better than 1% precision, finding σ 8 = 0.811 ± 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data at lower redshift, having a different degeneracy direction in σ 8 − Ωm space; we find consistency with the lensing results from the Dark Energy Survey, and give combined lensing-only parameter constraints that are tighter than joint results using galaxy clustering. Using the Planck cosmic infrared background (CIB) maps as an additional tracer of high-redshift matter, we make a combined Planck -only estimate of the lensing potential over 60% of the sky with considerably more small-scale signal. We additionally demonstrate delensing of the Planck power spectra using the joint and individual lensing potential estimates, detecting a maximum removal of 40% of the lensing-induced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance.

Journal ArticleDOI
TL;DR: The electronic properties of CsV_{3}Sb_{5} are presented, demonstrating bulk superconductivity in single crystals with a T_{c}=2.5 K, and the implications for the formation of unconventional super conductivity in this material are discussed.
Abstract: A cesium-rich ``kagome'' metal is both a topological insulator and a superconductor, making it a compelling material for future quantum technologies.

Journal ArticleDOI
TL;DR: From superconcentrated solvent-in-salt electrolytes to solid-state electrolytes, the current research realm of novel electrolyte systems has grown to unprecedented levels and this review will avoid discussions on current state-of-the-art electrolytes but instead focus exclusively on unconventional electrolytes systems that represent new concepts.
Abstract: Over the past decades, Li-ion battery (LIB) has turned into one of the most important advances in the history of technology due to its extensive and in-depth impact on our life. Its omnipresence in all electric vehicles, consumer electronics and electric grids relies on the precisely tuned electrochemical dynamics and interactions among the electrolytes and the diversified anode and cathode chemistries therein. With consumers' demand for battery performance ever increasing, more and more stringent requirements are being imposed upon the established equilibria among these LIB components, and it became clear that the state-of-the-art electrolyte systems could no longer sustain the desired technological trajectory. Driven by such gap, researchers started to explore more unconventional electrolyte systems. From superconcentrated solvent-in-salt electrolytes to solid-state electrolytes, the current research realm of novel electrolyte systems has grown to unprecedented levels. In this review, we will avoid discussions on current state-of-the-art electrolytes but instead focus exclusively on unconventional electrolyte systems that represent new concepts.

Journal ArticleDOI
Yashar Akrami1, Frederico Arroja2, M. Ashdown3, J. Aumont4  +187 moreInstitutions (59)
TL;DR: In this paper, the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps were used to obtain constraints on primordial non-Gaussianity.
Abstract: We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and optimal modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following final results: $f_{NL}^{local}$ = −0.9 ± 5.1; $f_{NL}^{equil}$ = −26 ± 47; and $f_{NL}^{ortho}$ = −38 ± 24 (68% CL, statistical). These results include low-multipole (4 ≤ l < 40) polarization data that are not included in our previous analysis. The results also pass an extensive battery of tests (with additional tests regarding foreground residuals compared to 2015), and they are stable with respect to our 2015 measurements (with small fluctuations, at the level of a fraction of a standard deviation, which is consistent with changes in data processing). Polarization-only bispectra display a significant improvement in robustness; they can now be used independently to set primordial NG constraints with a sensitivity comparable to WMAP temperature-based results and they give excellent agreement. In addition to the analysis of the standard local, equilateral, and orthogonal bispectrum shapes, we consider a large number of additional cases, such as scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is, however, detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5σ. Beyond estimates of individual shape amplitudes, we also present model-independent reconstructions and analyses of the Planck CMB bispectrum. Our final constraint on the local primordial trispectrum shape is $g_{NL}^{local}$ = (−5.8 ± 6.5) × 10$^4$ (68% CL, statistical), while constraints for other trispectrum shapes are also determined. Exploiting the tight limits on various bispectrum and trispectrum shapes, we constrain the parameter space of different early-Universe scenarios that generate primordial NG, including general single-field models of inflation, multi-field models (e.g. curvaton models), models of inflation with axion fields producing parity-violation bispectra in the tensor sector, and inflationary models involving vector-like fields with directionally-dependent bispectra. Our results provide a high-precision test for structure-formation scenarios, showing complete agreement with the basic picture of the ΛCDM cosmology regarding the statistics of the initial conditions, with cosmic structures arising from adiabatic, passive, Gaussian, and primordial seed perturbations.

Book
15 Mar 2020
TL;DR: HF diet resulted in significantly greater body weight and adiposity as well as decreased glucose tolerance that were prevented by voluntary Ex (p<0.05) and Ex induces a unique shift in the gut microbiota that is different from dietary effects.
Abstract: Background: Diet-induced obesity (DIO) is a significant health concern which has been linked to structural and functional changes in the gut microbiota. Exercise (Ex) is effective in preventing obesity, but whether Ex alters the gut microbiota during development with high fat (HF) feeding is unknown. Objective: Determine the effects of voluntary Ex on the gastrointestinal microbiota in LF-fed mice and in HF-DIO. Methods: Male C57BL/6 littermates (5 weeks) were distributed equally into 4 groups: low fat (LF) sedentary (Sed) LF/Sed, LF/ Ex, HF/Sed and HF/Ex. Mice were individually housed and LF/Ex and HF/Ex cages were equipped with a wheel and odometer to record Ex. Fecal samples were collected at baseline, 6 weeks and 12 weeks and used for bacterial DNA isolation. DNA was subjected both to quantitative PCR using primers specific to the 16S rRNA encoding genes for Bacteroidetes and Firmicutes and to sequencing for lower taxonomic identification using the Illumina MiSeq platform. Data were analyzed using a one or two-way ANOVA or Pearson correlation. Results: HF diet resulted in significantly greater body weight and adiposity as well as decreased glucose tolerance that were prevented by voluntary Ex (p,0.05). Visualization of Unifrac distance data with principal coordinates analysis indicated clustering by both diet and Ex at week 12. Sequencing demonstrated Ex-induced changes in the percentage of major bacterial phyla at 12 weeks. A correlation between total Ex distance and the DCt Bacteroidetes: DCt Firmicutes ratio from qPCR demonstrated a significant inverse correlation (r 2 =0.35, p=0.043). Conclusion: Ex induces a unique shift in the gut microbiota that is different from dietary effects. Microbiota changes may play a role in Ex prevention of HF-DIO.

Journal ArticleDOI
23 Apr 2020-Nature
TL;DR: This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems—that is, from perovskite-derived complex oxides to fluorite-structure binary oxides—in which ‘reverse’ size effects counterintuitively stabilize polar symmetry in the ultrathin regime.
Abstract: Ultrathin ferroelectric materials could potentially enable low-power logic and nonvolatile memories1,2. As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides—the archetypal ferroelectric system3. Perovskites, however, have so far proved unsuitable for thickness scaling and integration with modern semiconductor processes4. Here we report ferroelectricity in ultrathin doped hafnium oxide (HfO2), a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to a thickness of one nanometre. Our results indicate not only the absence of a ferroelectric critical thickness but also enhanced polar distortions as film thickness is reduced, unlike in perovskite ferroelectrics. This approach to enhancing ferroelectricity in ultrathin layers could provide a route towards polarization-driven memories and ferroelectric-based advanced transistors. This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems—that is, from perovskite-derived complex oxides to fluorite-structure binary oxides—in which ‘reverse’ size effects counterintuitively stabilize polar symmetry in the ultrathin regime. Enhanced switchable ferroelectric polarization is achieved in doped hafnium oxide films grown directly onto silicon using low-temperature atomic layer deposition, even at thicknesses of just one nanometre.

Journal ArticleDOI
TL;DR: In this article, the authors show that the strong interaction of Fe with the MOxHy host is the key to controlling the average number of Fe active sites present at the solid/liquid interface.
Abstract: The poor activity and stability of electrode materials for the oxygen evolution reaction are the main bottlenecks in the water-splitting reaction for H2 production. Here, by studying the activity–stability trends for the oxygen evolution reaction on conductive M1OxHy, Fe–M1OxHy and Fe–M1M2OxHy hydr(oxy)oxide clusters (M1 = Ni, Co, Fe; M2 = Mn, Co, Cu), we show that balancing the rates of Fe dissolution and redeposition over a MOxHy host establishes dynamically stable Fe active sites. Together with tuning the Fe content of the electrolyte, the strong interaction of Fe with the MOxHy host is the key to controlling the average number of Fe active sites present at the solid/liquid interface. We suggest that the Fe–M adsorption energy can therefore serve as a reaction descriptor that unifies oxygen evolution reaction catalysis on 3d transition-metal hydr(oxy)oxides in alkaline media. Thus, the introduction of dynamically stable active sites extends the design rules for creating active and stable interfaces. Understanding what underpins the activity and stability of oxygen evolution catalysts is an ongoing issue in the field of water splitting. Now, researchers show that balancing the rate of Fe dissolution and deposition over a metal hydr(oxy)oxide host yields dynamically stable Fe active sites, with the Fe–host interaction key to the performance.

Journal ArticleDOI
Edoardo Aprà1, Eric J. Bylaska1, W. A. de Jong2, Niranjan Govind1, Karol Kowalski1, T. P. Straatsma3, Marat Valiev1, H. J. J. van Dam4, Yuri Alexeev5, J. Anchell6, V. Anisimov5, Fredy W. Aquino, Raymond Atta-Fynn7, Jochen Autschbach8, Nicholas P. Bauman1, Jeffrey C. Becca9, David E. Bernholdt10, K. Bhaskaran-Nair11, Stuart Bogatko12, Piotr Borowski13, Jeffery S. Boschen14, Jiří Brabec15, Adam Bruner16, Emilie Cauet17, Y. Chen18, Gennady N. Chuev19, Christopher J. Cramer20, Jeff Daily1, M. J. O. Deegan, Thom H. Dunning21, Michel Dupuis8, Kenneth G. Dyall, George I. Fann10, Sean A. Fischer22, Alexandr Fonari23, Herbert A. Früchtl24, Laura Gagliardi20, Jorge Garza25, Nitin A. Gawande1, Soumen Ghosh20, Kurt R. Glaesemann1, Andreas W. Götz26, Jeff R. Hammond6, Volkhard Helms27, Eric D. Hermes28, Kimihiko Hirao, So Hirata29, Mathias Jacquelin2, Lasse Jensen9, Benny G. Johnson, Hannes Jónsson30, Ricky A. Kendall10, Michael Klemm6, Rika Kobayashi31, V. Konkov32, Sriram Krishnamoorthy1, M. Krishnan18, Zijing Lin33, Roberto D. Lins34, Rik J. Littlefield, Andrew J. Logsdail35, Kenneth Lopata36, Wan Yong Ma37, Aleksandr V. Marenich20, J. Martin del Campo38, Daniel Mejía-Rodríguez39, Justin E. Moore6, Jonathan M. Mullin, Takahito Nakajima, Daniel R. Nascimento1, Jeffrey A. Nichols10, P. J. Nichols40, J. Nieplocha1, Alberto Otero-de-la-Roza41, Bruce J. Palmer1, Ajay Panyala1, T. Pirojsirikul42, Bo Peng1, Roberto Peverati32, Jiri Pittner15, L. Pollack, Ryan M. Richard43, P. Sadayappan44, George C. Schatz45, William A. Shelton36, Daniel W. Silverstein46, D. M. A. Smith6, Thereza A. Soares47, Duo Song1, Marcel Swart, H. L. Taylor48, G. S. Thomas1, Vinod Tipparaju49, Donald G. Truhlar20, Kiril Tsemekhman, T. Van Voorhis50, Álvaro Vázquez-Mayagoitia5, Prakash Verma, Oreste Villa51, Abhinav Vishnu1, Konstantinos D. Vogiatzis52, Dunyou Wang53, John H. Weare26, Mark J. Williamson54, Theresa L. Windus14, Krzysztof Wolinski13, A. T. Wong, Qin Wu4, Chan-Shan Yang2, Q. Yu55, Martin Zacharias56, Zhiyong Zhang57, Yan Zhao58, Robert W. Harrison59 
Pacific Northwest National Laboratory1, Lawrence Berkeley National Laboratory2, National Center for Computational Sciences3, Brookhaven National Laboratory4, Argonne National Laboratory5, Intel6, University of Texas at Arlington7, State University of New York System8, Pennsylvania State University9, Oak Ridge National Laboratory10, Washington University in St. Louis11, Wellesley College12, Maria Curie-Skłodowska University13, Iowa State University14, Academy of Sciences of the Czech Republic15, University of Tennessee at Martin16, Université libre de Bruxelles17, Facebook18, Russian Academy of Sciences19, University of Minnesota20, University of Washington21, United States Naval Research Laboratory22, Georgia Institute of Technology23, University of St Andrews24, Universidad Autónoma Metropolitana25, University of California, San Diego26, Saarland University27, Sandia National Laboratories28, University of Illinois at Urbana–Champaign29, University of Iceland30, Australian National University31, Florida Institute of Technology32, University of Science and Technology of China33, Oswaldo Cruz Foundation34, Cardiff University35, Louisiana State University36, Chinese Academy of Sciences37, National Autonomous University of Mexico38, University of Florida39, Los Alamos National Laboratory40, University of Oviedo41, Prince of Songkla University42, Ames Laboratory43, University of Utah44, Northwestern University45, Universal Display Corporation46, Federal University of Pernambuco47, CD-adapco48, Cray49, Massachusetts Institute of Technology50, Nvidia51, University of Tennessee52, Shandong Normal University53, University of Cambridge54, Advanced Micro Devices55, Technische Universität München56, Stanford University57, Wuhan University of Technology58, Stony Brook University59
TL;DR: The NWChem computational chemistry suite is reviewed, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.
Abstract: Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.

Journal ArticleDOI
01 Dec 2020
TL;DR: In this paper, an atomically dispersed Co and N co-doped carbon (CoN4C12) catalyst with porphyrin-like sites is reported with an improved activity and durability in PEM fuel cell conditions.
Abstract: The development of catalysts free of platinum-group metals and with both a high activity and durability for the oxygen reduction reaction in proton exchange membrane fuel cells is a grand challenge. Here we report an atomically dispersed Co and N co-doped carbon (Co–N–C) catalyst with a high catalytic oxygen reduction reaction activity comparable to that of a similarly synthesized Fe–N–C catalyst but with a four-time enhanced durability. The Co–N–C catalyst achieved a current density of 0.022 A cm−2 at 0.9 ViR-free (internal resistance-compensated voltage) and peak power density of 0.64 W cm−2 in 1.0 bar H2/O2 fuel cells, higher than that of non-iron platinum-group-metal-free catalysts reported in the literature. Importantly, we identified two main degradation mechanisms for metal (M)–N–C catalysts: catalyst oxidation by radicals and active-site demetallation. The enhanced durability of Co–N–C relative to Fe–N–C is attributed to the lower activity of Co ions for Fenton reactions that produce radicals from the main oxygen reduction reaction by-product, H2O2, and the significantly enhanced resistance to demetallation of Co–N–C. Platinum-group-metal-free, non-iron catalysts are highly desirable for the oxygen reduction reaction at proton exchange membrane (PEM) fuel cell cathodes, as they avoid the detrimental Fenton reactions. Now, a cobalt and nitrogen co-doped carbon catalyst with atomically dispersed porphyrin-like CoN4C12 sites is reported with an improved activity and durability in PEM fuel cell conditions.

Journal ArticleDOI
TL;DR: In this article, a comprehensive overview of the recent developments in composite solid-state electrolytes (CSSEs) is presented, and four main types of advanced structures for CSSEs are classified and highlighted according to the recent progress.
Abstract: All-solid-state lithium ion batteries (ASSLBs) are considered next-generation devices for energy storage due to their advantages in safety and potentially high energy density. As the key component in ASSLBs, solid-state electrolytes (SSEs) with non-flammability and good adaptability to lithium metal anodes have attracted extensive attention in recent years. Among the current SSEs, composite solid-state electrolytes (CSSEs) with multiple phases have greater flexibility to customize and combine the advantages of single-phase electrolytes, which have been widely investigated recently and regarded as promising candidates for commercial ASSLBs. Based on existing investigations, herein, we present a comprehensive overview of the recent developments in CSSEs. Initially, we introduce the historical development from solid-state ionic conductors to CSSEs, and then summarize the fundamentals including mechanisms of lithium ion transport, key evaluation parameters, design principles, and key materials. Four main types of advanced structures for CSSEs are classified and highlighted according to the recent progress. Moreover, advanced characterization and computational simulation techniques including machine learning are reviewed for the first time, and the main challenges and perspectives of CSSEs are also provided for their future development.

Journal ArticleDOI
TL;DR: An in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2 O5, exhibiting a stable and highly reversible electrochemical reaction during repetitive Zn 2+ insertion and extraction.
Abstract: Rechargeable zinc-ion batteries (ZIBs) are emerging as a promising alternative for Li-ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2 O5 . In this way, a remarkably enlarged interlayer distance (13.90 A) can be constructed alternatively between the VO layers, offering expediting channels for facile Zn2+ diffusion. Importantly, the electrostatic interactions between the Zn2+ and the host O2- , which is another key factor in hindering the Zn2+ diffusion kinetics, can be effectively blocked by the unique π-conjugated structure of PANI. As a result, the PANI-intercalated V2 O5 exhibits a stable and highly reversible electrochemical reaction during repetitive Zn2+ insertion and extraction, as demonstrated by in situ synchrotron X-ray diffraction and Raman studies. Further first-principles calculations clearly reveal a remarkably lowered binding energy between Zn2+ and host O2- , which explains the favorable kinetics in PANI-intercalated V2 O5 . Benefitting from the above, the overall electrochemical performance of PANI-intercalated V2 O5 electrode is remarkable improved, exhibiting excellent high rate capability of 197.1 mAh g-1 at current density of 20 A g-1 with capacity retention of 97.6% over 2000 cycles.

Journal ArticleDOI
TL;DR: The room temperature X-ray structure of unliganded SARS-CoV-2 3CL Mpro is reported, revealing the ligand-free structure of the active site and the conformation of the catalytic site cavity at near-physiological temperature, which suggests that the room temperature structure may provide more relevant information at physiological temperatures for aiding in molecular docking studies.
Abstract: The COVID-19 disease caused by the SARS-CoV-2 coronavirus has become a pandemic health crisis. An attractive target for antiviral inhibitors is the main protease 3CL Mpro due to its essential role in processing the polyproteins translated from viral RNA. Here we report the room temperature X-ray structure of unliganded SARS-CoV-2 3CL Mpro, revealing the ligand-free structure of the active site and the conformation of the catalytic site cavity at near-physiological temperature. Comparison with previously reported low-temperature ligand-free and inhibitor-bound structures suggest that the room temperature structure may provide more relevant information at physiological temperatures for aiding in molecular docking studies.

Journal ArticleDOI
19 Oct 2020
TL;DR: In this paper, the use of synchrotron radiation beamtime at the beamline SuperXAS of the Advanced Photon Source (SLS) under Contract DE-AC02-06CH11357.
Abstract: This work was supported by MOST (grant no. 2016YFA0203302), NSFC (grant nos. 21875042, 21634003 and 51573027), STCSM (grant nos. 16JC1400702 and 18QA1400800), SHMEC (grant no. 2017-01-07-00-07-E00062) and Yanchang Petroleum Group. This work was also supported by The Programme for Professor of Eastern Scholar at Shanghai Institutions of Higher Learning. This work was supported by the Ontario Research Fund—Research Excellence Program, NSERC and the CIFAR Bio-Inspired Solar Energy program. This work has also benefited from the use of the SGM beamlines at Canadian Light Source; the 1W1B and 4B9B beamlines at the Beijing Synchrotron Radiation Facility; the BL14W1, BL08U1-A beamline at Shanghai Synchrotron Radiation Facility; and the 44A beamline at Taiwan Photon Source (TPS). Mossbauer spectroscopy measurements were conducted at the Advanced Photon Source, a Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland, for provision of synchrotron radiation beamtime at the beamline SuperXAS of the SLS and would like to thank M. Nachtegaal for assistance. We thank M. Garcia-Melchor and Y. Zhang for discussions on DFT calculations. We thank J. Wu for the assistance with the TEM measurements. We thank R. Wolowiec and D. Kopilovic for their assistance. For computer time, this research used the resources of the Supercomputing Laboratory at KAUST.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors designed a series of nickel phthalocyanine molecules supported on carbon nanotubes as molecularly dispersed electrocatalysts (MDEs), achieving CO2 reduction performances that are superior to aggregated molecular catalysts in terms of stability, activity and selectivity.
Abstract: Electrochemical reduction of CO2 is a promising route for sustainable production of fuels. A grand challenge is developing low-cost and efficient electrocatalysts that can enable rapid conversion with high product selectivity. Here we design a series of nickel phthalocyanine molecules supported on carbon nanotubes as molecularly dispersed electrocatalysts (MDEs), achieving CO2 reduction performances that are superior to aggregated molecular catalysts in terms of stability, activity and selectivity. The optimized MDE with methoxy group functionalization solves the stability issue of the original nickel phthalocyanine catalyst and catalyses the conversion of CO2 to CO with >99.5% selectivity at high current densities of up to −300 mA cm−2 in a gas diffusion electrode device with stable operation at −150 mA cm−2 for 40 h. The well-defined active sites of MDEs also facilitate the in-depth mechanistic understandings from in situ/operando X-ray absorption spectroscopy and theoretical calculations on structural factors that affect electrocatalytic performance. Widespread deployment of electrochemical CO2 reduction requires low-cost catalysts that perform well at high current densities. Zhang et al. show that methoxy-functionalized nickel phthalocyanine molecules on carbon nanotubes can operate as high-performing molecularly dispersed electrocatalysts at current densities of up to −300 mA cm–2.

Journal ArticleDOI
TL;DR: In this article, a carbon-supported copper (Cu) catalyst, synthesized by an amalgamated Cu-Li method, achieves a singleproduct Faradaic efficiency (FE) of 91% at −0.7
Abstract: Direct electrochemical conversion of CO2 to ethanol offers a promising strategy to lower CO2 emissions while storing energy from renewable electricity. However, current electrocatalysts offer only limited selectivity toward ethanol. Here we report a carbon-supported copper (Cu) catalyst, synthesized by an amalgamated Cu–Li method, that achieves a single-product Faradaic efficiency (FE) of 91% at −0.7 V (versus the reversible hydrogen electrode) and onset potential as low as −0.4 V (reversible hydrogen electrode) for electrocatalytic CO2-to-ethanol conversion. The catalyst operated stably over 16 h. The FE of ethanol was highly sensitive to the initial dispersion of Cu atoms and decreased significantly when CuO and large Cu clusters become predominant species. Operando X-ray absorption spectroscopy identified a reversible transformation from atomically dispersed Cu atoms to Cun clusters (n = 3 and 4) on application of electrochemical conditions. First-principles calculations further elucidate the possible catalytic mechanism of CO2 reduction over Cun. Electrocatalytically reducing CO2 to ethanol can provide renewably generated fuel, but catalysts are often poorly selective for this conversion. Here the authors use a Cu catalyst to produce ethanol with high selectivity. Cu dispersion is key to the performance and operando studies indicate that it changes under reaction conditions.

Journal ArticleDOI
06 Jan 2020
TL;DR: This work introduces an unsupervised machine learning (ML) based technique for the identification and characterization of microstructures in three-dimensional samples obtained from molecular dynamics simulations, particle tracking data, or experiments that combines topology classification, image processing, and clustering algorithms.
Abstract: We introduce an unsupervised machine learning (ML) based technique for the identification and characterization of microstructures in three-dimensional (3D) samples obtained from molecular dynamics simulations, particle tracking data, or experiments. Our technique combines topology classification, image processing, and clustering algorithms, and can handle a wide range of microstructure types including grains in polycrystalline materials, voids in porous systems, and structures from self/directed assembly in soft-matter complex solutions. Our technique does not require a priori microstructure description of the target system and is insensitive to disorder such as extended defects in polycrystals arising from line and plane defects. We demonstrate quantitively that our technique provides unbiased microstructural information such as precise quantification of grains and their size distributions in 3D polycrystalline samples, characterizes features such as voids and porosity in 3D polymeric samples and micellar size distribution in 3D complex fluids. To demonstrate the efficacy of our ML approach, we benchmark it against a diverse set of synthetic data samples representing nanocrystalline metals, polymers and complex fluids as well as experimentally published characterization data. Our technique is computationally efficient and provides a way to quickly identify, track, and quantify complex microstructural features that impact the observed material behavior.

Journal ArticleDOI
TL;DR: Two high‐resolution crystal structures of endoribonuclease Nsp15/NendoU of SARS‐CoV‐2 are reported and compared with previously reported homologs from SARS and MERS coronaviruses.
Abstract: Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is rapidly spreading around the world. There is no existing vaccine or proven drug to prevent infections and stop virus proliferation. Although this virus is similar to human and animal SARS-CoVs and Middle East Respiratory Syndrome coronavirus (MERS-CoVs), the detailed information about SARS-CoV-2 proteins structures and functions is urgently needed to rapidly develop effective vaccines, antibodies, and antivirals. We applied high-throughput protein production and structure determination pipeline at the Center for Structural Genomics of Infectious Diseases to produce SARS-CoV-2 proteins and structures. Here we report two high-resolution crystal structures of endoribonuclease Nsp15/NendoU. We compare these structures with previously reported homologs from SARS and MERS coronaviruses.

Journal ArticleDOI
TL;DR: A dual protection strategy has been developed by nanocasting SiO2 into metal–organic frameworks to prepare high-loading SACs with excellent catalytic performance toward oxygen reduction and a general synthetic methodology toward high-content Sacs (such as FeSA, CoSA, NiSA).
Abstract: Single-atom catalysts (SACs) have sparked broad interest recently while the low metal loading poses a big challenge for further applications. Herein, a dual protection strategy has been developed to give high-content SACs by nanocasting SiO2 into porphyrinic metal–organic frameworks (MOFs). The pyrolysis of SiO2@MOF composite affords single-atom Fe implanted N-doped porous carbon (FeSA–N–C) with high Fe loading (3.46 wt%). The spatial isolation of Fe atoms centered in porphyrin linkers of MOF sets the first protective barrier to inhibit the Fe agglomeration during pyrolysis. The SiO2 in MOF provides additional protection by creating thermally stable FeN4/SiO2 interfaces. Thanks to the high-density FeSA sites, FeSA–N–C demonstrates excellent oxygen reduction performance in both alkaline and acidic medias. Meanwhile, FeSA–N–C also exhibits encouraging performance in proton exchange membrane fuel cell, demonstrating great potential for practical application. More far-reaching, this work grants a general synthetic methodology toward high-content SACs (such as FeSA, CoSA, NiSA). Single-atom catalysts (SACs) with high metal loading are highly desired to improve catalytic performance. Here, the authors report a dual protection strategy by nanocasting SiO2 into metal–organic frameworks to prepare high-loading SACs with excellent catalytic performance toward oxygen reduction.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Dale Charles Abbott3, Ovsat Abdinov4  +2934 moreInstitutions (199)
TL;DR: In this article, a search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented, based on 139.fb$^{-1}$ of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at
Abstract: A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb$^{-1}$ of proton–proton collisions recorded by the ATLAS detector at the Large Hadron Collider at $\sqrt{s}=13$ $\text {TeV}$. Three R-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either W bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95% confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 $\text {Ge}\text {V}$ are excluded for the production of the lightest-chargino pairs assuming W-boson-mediated decays and up to 1 $\text {TeV}$ for slepton-mediated decays, whereas for slepton-pair production masses up to 700 $\text {Ge}\text {V}$ are excluded assuming three generations of mass-degenerate sleptons.

Journal ArticleDOI
01 Feb 2020
TL;DR: In this paper, the authors present a materials processing strategy based on in situ electrodeposition of copper under CO2 reduction conditions that preferentially expose and maintain Cu(100) facets, which favor the formation of C2+ products.
Abstract: The electrosynthesis of C2+ hydrocarbons from CO2 has attracted recent attention in light of the relatively high market price per unit energy input. Today’s low selectivities and stabilities towards C2+ products at high current densities curtail system energy efficiency, which limits their prospects for economic competitiveness. Here we present a materials processing strategy based on in situ electrodeposition of copper under CO2 reduction conditions that preferentially expose and maintain Cu(100) facets, which favour the formation of C2+ products. We observe capping of facets during catalyst synthesis and achieve control over faceting to obtain a 70% increase in the ratio of Cu(100) facets to total facet area. We report a 90% Faradaic efficiency for C2+ products at a partial current density of 520 mA cm−2 and a full-cell C2+ power conversion efficiency of 37%. We achieve nearly constant C2H4 selectivity over 65 h operation at 350 mA cm−2 in a membrane electrode assembly electrolyser. Electrocatalytic reduction of CO2 to multicarbon products is useful for producing high-value chemicals and fuels. Here the authors present a strategy that is based on the in situ electrodeposition of copper under CO2 reduction conditions that preferentially expose and maintain Cu(100) facets, which favour the formation of C2+ products.