scispace - formally typeset
Search or ask a question
Institution

École Polytechnique

EducationPalaiseau, France
About: École Polytechnique is a education organization based out in Palaiseau, France. It is known for research contribution in the topics: Laser & Plasma. The organization has 18995 authors who have published 39265 publications receiving 1225163 citations. The organization is also known as: Ecole Polytechnique & Polytechnique.
Topics: Laser, Plasma, Electron, Population, Nonlinear system


Papers
More filters
Journal ArticleDOI
TL;DR: The Large Hadron Electron Collider (LHeC) as discussed by the authors was designed to achieve an integrated luminosity of O(100 ),fb$^{-1}, which is the cleanest high resolution microscope of mankind.
Abstract: This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100)\,fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.

553 citations

Journal ArticleDOI
TL;DR: In this article, a review of results of the so-called Painleve singularity approach to the investigation of the integrability of dynamical systems with finite and infinite number of degrees of freedom is presented.

547 citations

Journal ArticleDOI
TL;DR: In this paper, the spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid was observed in a solid state system made of exciton polaritons.
Abstract: When a superfluid—such as liquid helium—is set in rotation, vortices appear in which circulation around a closed loop can take only discrete values. Such quantized vortices have now been observed in a solid-state system—a Bose–Einstein condensate made of exciton polaritons. One of the most striking quantum effects in an interacting Bose gas at low temperature is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its remarkable features such as the persistence of superflows and the proliferation of quantized vortices1. The achievement of Bose–Einstein condensation in dilute atomic gases2 provided the opportunity to observe and study superfluidity in an extremely clean and well-controlled environment. In the solid state, Bose–Einstein condensation of exciton polaritons has been reported recently3,4,5,6. Polaritons are strongly interacting light–matter quasiparticles that occur naturally in semiconductor microcavities in the strong-coupling regime and constitute an interesting example of composite bosons. Here, we report the observation of spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid. Theoretical insight into the possible origin of such vortices is presented in terms of a generalized Gross–Pitaevskii equation. Whereas the observation of quantized vortices is, in itself, not sufficient for establishing the superfluid nature of the non-equilibrium polariton condensate, it suggests parallels between our system and conventional superfluids.

544 citations

Journal ArticleDOI
TL;DR: Although this method is not specifically designed for topology optimization, it can easily handle topology changes for a very large class of objective functions and its cost is moderate since the shape is captured on a fixed Eulerian mesh.

543 citations

Journal ArticleDOI
TL;DR: In this article, the authors define the price for a claim C as the smallest real number p such that supπE[U(XTx+p,π−C)]≥ supπ E[U[XTx,π]], where U is the negative exponential utility function and Xx, π is the wealth associated with portfolio π and initial value x.
Abstract: In a financial market model with constraints on the portfolios, define the price for a claim C as the smallest real number p such that supπ E[U(XTx+p, π−C)]≥ supπ E[U(XTx, π)], where U is the negative exponential utility function and Xx, π is the wealth associated with portfolio π and initial value x. We give the relations of this price with minimal entropy or fair price in the flavor of Karatzas and Kou (1996) and superreplication. Using dynamical methods, we characterize the price equation, which is a quadratic Backward SDE, and describe the optimal wealth and portfolio. Further use of Backward SDE techniques allows for easy determination of the pricing function properties.

541 citations


Authors

Showing all 19056 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Jing Wang1844046202769
David L. Kaplan1771944146082
Lorenzo Bianchini1521516106970
David D'Enterria1501592116210
Vivek Sharma1503030136228
Melody A. Swartz1481304103753
Edward G. Lakatta14685888637
Carlo Rovelli1461502103550
Marc Besancon1431799106869
Maksym Titov1391573128335
Jean-Paul Kneib13880589287
Yves Sirois137133495714
Maria Spiropulu135145596674
Shaik M. Zakeeruddin13345376010
Network Information
Related Institutions (5)
École Normale Supérieure
99.4K papers, 3M citations

95% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022116
20211,470
20201,666
20191,483
20181,218