scispace - formally typeset
Search or ask a question
Institution

École Polytechnique

EducationPalaiseau, France
About: École Polytechnique is a education organization based out in Palaiseau, France. It is known for research contribution in the topics: Laser & Plasma. The organization has 18995 authors who have published 39265 publications receiving 1225163 citations. The organization is also known as: Ecole Polytechnique & Polytechnique.
Topics: Laser, Plasma, Electron, Population, Nonlinear system


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the F-term dynamical supersymmetry breaking models with metastable vacua were used to uplift the vacuum energy in the KKLT moduli stabilization scenario.
Abstract: We use the F-term dynamical supersymmetry breaking models with metastable vacua in order to uplift the vacuum energy in the KKLT moduli stabilization scenario. The main advantage compared to earlier proposals is the manifest supersymmetric treatment and the natural coexistence of a TeV gravitino mass with a zero cosmological constant. We argue that it is generically difficult to avoid anti de-Sitter supersymmetric minima, however the tunneling rate from the metastable vacuum with zero vacuum energy towards them can be very suppressed. We briefly comment on the properties of the induced soft terms in the observable sector.

202 citations

Journal ArticleDOI
TL;DR: The present results for ligand binding in heme proteins and its time and temperature dependence are discussed and it appears likely that, at low temperatures, inhomogeneous protein populations play an important role and that as the temperature is raised, relaxation effects become significant as well.
Abstract: Ultrafast absorption spectroscopy is used to study heme-NO recombination at room temperature in aqueous buffer on time scales where the ligand cannot leave its cage environment. While a single barrier is observed for the cage recombination of NO with heme in the absence of globin, recombination in hemoglobin and myoglobin is nonexponential. Examination of hemoglobin with and without inositol hexaphosphate points to proximal constraints as important determinants of the geminate rebinding kinetics. Molecular dynamics simulations of myoglobin and heme-imidazole subsequent to ligand dissociation were used to investigate the transient behavior of the Fe-proximal histidine coordinate and its possible involvement in geminate recombination. The calculations, in the context of the absorption measurements, are used to formulate a distinction between nonexponential rebinding that results from multiple protein conformations (substates) present at equilibrium or from nonequilibrium relaxation of the protein triggered by a perturbation such as ligand dissociation. The importance of these two processes is expected to depend on the time scale of rebinding relative to equilibrium fluctuations and nonequilibrium relaxation. Since NO rebinding occurs on the picosecond time scale of the calculated myoglobin relaxation, a time-dependent barrier is likely to be an important factor in the observed nonexponential kinetics. The general implications of the present results for ligand binding in heme proteins and its time and temperature dependence are discussed. It appears likely that, at low temperatures, inhomogeneous protein populations play an important role and that as the temperature is raised, relaxation effects become significant as well.

202 citations

Journal ArticleDOI
TL;DR: In this paper, a supersymmetric relative of the Poisson sigma model was constructed for deformation quantization in generalized complex geometry, a notion introduced by Hitchin which interpolates between complex and symplectic manifolds.
Abstract: We find a worldsheet realization of generalized complex geometry, a notion introduced recently by Hitchin which interpolates between complex and symplectic manifolds. The two–dimensional model we construct is a supersymmetric relative of the Poisson sigma model used in the context of deformation quantization.

202 citations

Journal ArticleDOI
TL;DR: Azzam's differential matrix formalism is extended to include depolarizing media and results in a particularly simple mathematical procedure for the retrieval of the elementary properties of a generallydepolarizing anisotropic medium, assumed to be globally homogeneous, from its experimental Mueller matrix.
Abstract: Azzam's differential matrix formalism [J. Opt. Soc. Am. 68, 1756 (1978)], originally developed for longitudinally inhomogeneous anisotropic nondepolarizing media, is extended to include depolarizing media. The generalization is physically interpreted in terms of means and uncertainties of the elementary optical properties of the medium, as well as of three anisotropy absorption parameters introduced to describe the depolarization. The formalism results in a particularly simple mathematical procedure for the retrieval of the elementary properties of a generally depolarizing anisotropic medium, assumed to be globally homogeneous, from its experimental Mueller matrix. The approach is illustrated on literature data and the conditions of its validity are identified and discussed.

202 citations

Journal ArticleDOI
TL;DR: It is concluded that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.
Abstract: Using femtosecond time-resolved photoelectron spectroscopy we demonstrate that photoexcitation transforms monoclinic ${\mathrm{VO}}_{2}$ quasi-instantaneously into a metal. Thereby, we exclude an 80 fs structural bottleneck for the photoinduced electronic phase transition of ${\mathrm{VO}}_{2}$. First-principles many-body perturbation theory calculations reveal a high sensitivity of the ${\mathrm{VO}}_{2}$ band gap to variations of the dynamically screened Coulomb interaction, supporting a fully electronically driven isostructural insulator-to-metal transition. We thus conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V $3d$ valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.

201 citations


Authors

Showing all 19056 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Jing Wang1844046202769
David L. Kaplan1771944146082
Lorenzo Bianchini1521516106970
David D'Enterria1501592116210
Vivek Sharma1503030136228
Melody A. Swartz1481304103753
Edward G. Lakatta14685888637
Carlo Rovelli1461502103550
Marc Besancon1431799106869
Maksym Titov1391573128335
Jean-Paul Kneib13880589287
Yves Sirois137133495714
Maria Spiropulu135145596674
Shaik M. Zakeeruddin13345376010
Network Information
Related Institutions (5)
École Normale Supérieure
99.4K papers, 3M citations

95% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022116
20211,470
20201,666
20191,483
20181,218