scispace - formally typeset
Search or ask a question

Showing papers by "École Polytechnique published in 2011"


Journal ArticleDOI
TL;DR: A first-order primal-dual algorithm for non-smooth convex optimization problems with known saddle-point structure can achieve O(1/N2) convergence on problems, where the primal or the dual objective is uniformly convex, and it can show linear convergence, i.e. O(ωN) for some ω∈(0,1), on smooth problems.
Abstract: In this paper we study a first-order primal-dual algorithm for non-smooth convex optimization problems with known saddle-point structure. We prove convergence to a saddle-point with rate O(1/N) in finite dimensions for the complete class of problems. We further show accelerations of the proposed algorithm to yield improved rates on problems with some degree of smoothness. In particular we show that we can achieve O(1/N 2) convergence on problems, where the primal or the dual objective is uniformly convex, and we can show linear convergence, i.e. O(? N ) for some ??(0,1), on smooth problems. The wide applicability of the proposed algorithm is demonstrated on several imaging problems such as image denoising, image deconvolution, image inpainting, motion estimation and multi-label image segmentation.

4,487 citations


Journal ArticleDOI
17 Nov 2011-Nature
TL;DR: Tunnels based on ultrathin semiconducting films or nanowires could achieve a 100-fold power reduction over complementary metal–oxide–semiconductor transistors, so integrating tunnel FETs with CMOS technology could improve low-power integrated circuits.
Abstract: Power dissipation is a fundamental problem for nanoelectronic circuits. Scaling the supply voltage reduces the energy needed for switching, but the field-effect transistors (FETs) in today's integrated circuits require at least 60 mV of gate voltage to increase the current by one order of magnitude at room temperature. Tunnel FETs avoid this limit by using quantum-mechanical band-to-band tunnelling, rather than thermal injection, to inject charge carriers into the device channel. Tunnel FETs based on ultrathin semiconducting films or nanowires could achieve a 100-fold power reduction over complementary metal-oxide-semiconductor (CMOS) transistors, so integrating tunnel FETs with CMOS technology could improve low-power integrated circuits.

2,390 citations


Journal ArticleDOI
K. Abe1, N. Abgrall2, Yasuo Ajima, Hiroaki Aihara1  +413 moreInstitutions (53)
TL;DR: The T2K experiment observes indications of ν (μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target, and under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance.
Abstract: The T2K experiment observes indications of nu(mu) -> nu(mu) e appearance in data accumulated with 1.43 x 10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Delta m(23)(2)| = 2.4 x 10(-3) eV(2), sin(2)2 theta(23) = 1 and sin(2)2 theta(13) = 0, the expected number of such events is 1.5 +/- 0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7 x 10(-3), equivalent to 2.5 sigma significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2 theta(13) < 0.28(0.34) for delta(CP) = 0 and a normal (inverted) hierarchy.

1,361 citations


Journal ArticleDOI
TL;DR: The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress as mentioned in this paper.
Abstract: A golden age for heavy-quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the B-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations at BESIII, the LHC, RHIC, FAIR, the Super Flavor and/or Tau-Charm factories, JLab, the ILC, and beyond. The list of newly found conventional states expanded to include h(c)(1P), chi(c2)(2P), B-c(+), and eta(b)(1S). In addition, the unexpected and still-fascinating X(3872) has been joined by more than a dozen other charmonium- and bottomonium-like "XYZ" states that appear to lie outside the quark model. Many of these still need experimental confirmation. The plethora of new states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c (c) over bar, b (b) over bar, and b (c) over bar bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. Lattice QCD has grown from a tool with computational possibilities to an industrial-strength effort now dependent more on insight and innovation than pure computational power. New effective field theories for the description of quarkonium in different regimes have been developed and brought to a high degree of sophistication, thus enabling precise and solid theoretical predictions. Many expected decays and transitions have either been measured with precision or for the first time, but the confusing patterns of decays, both above and below open-flavor thresholds, endure and have deepened. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.

1,354 citations


Journal ArticleDOI
Marcos Daniel Actis1, G. Agnetta2, Felix Aharonian3, A. G. Akhperjanian  +682 moreInstitutions (109)
TL;DR: The ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes as mentioned in this paper, which is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100GeV and above 100 TeV.
Abstract: Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

1,006 citations


Journal ArticleDOI
23 Dec 2011
TL;DR: In this article, the LHCb simulation application, Gauss, consists of two independent phases, the generation of the primary event and the tracking of particles produced in the experimental setup.
Abstract: The LHCb simulation application, Gauss, consists of two independent phases, the generation of the primary event and the tracking of particles produced in the experimental setup. For the LHCb experimental program it is particularly important to model B meson decays: the EvtGen code developed in CLEO and BABAR has been chosen and customized for non-coherent B production as occuring in pp collisions at the LHC. The initial proton-proton collision is provided by a different generator engine, currently PYTHIA 6 for massive production of signal and generic pp collisions events. Beam gas events, background events originating from proton halo, cosmics and calibration events for different detectors can be generated in addition to pp collisions. Different generator packages as available in the physics community or specifically developed in LHCb are used for the different purposes. Running conditions affecting the generated events such as the size of the luminous region, the number of collisions occuring in a bunch crossing and the number of spill-over events from neighbouring bunches are modeled via dedicated algorithms appropriately configured. The design of the generator phase of Gauss will be described: a modular structure with well defined interfaces specific to the various tasks, e.g. pp collisions, particle decays, selections, etc. has been chosen. Different implementations are available for the various tasks allowing selecting and combining them as most appropriate at run time as in the case of PYTHIA 6 for pp collisions or HIJING for beam gas. The advantages of such structure, allowing for example to adopt transparently new generators packages, will be discussed.

631 citations


MonographDOI
01 Feb 2011
TL;DR: In this paper, the authors present a cutting-edge perspective on radio frequency plasmas, including basic plasma physics including transport and electrical diagnostics, and worked examples apply the theories covered to realistic scenarios.
Abstract: Low-temperature radio frequency plasmas are essential in various sectors of advanced technology, from micro-engineering to spacecraft propulsion systems and efficient sources of light. The subject lies at the complex interfaces between physics, chemistry and engineering. Focusing mostly on physics, this book will interest graduate students and researchers in applied physics and electrical engineering. The book incorporates a cutting-edge perspective on RF plasmas. It also covers basic plasma physics including transport in bounded plasmas and electrical diagnostics. Its pedagogic style engages readers, helping them to develop physical arguments and mathematical analyses. Worked examples apply the theories covered to realistic scenarios, and over 100 in-text questions let readers put their newly acquired knowledge to use and gain confidence in applying physics to real laboratory situations.

603 citations


Journal ArticleDOI
Markus Ackermann1, Marco Ajello1, Andrea Albert2, W. B. Atwood3  +153 moreInstitutions (32)
TL;DR: This work presents a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope, and is able to rule out models with the most generic cross section, using gamma rays.
Abstract: Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particl ...

602 citations


Journal ArticleDOI
13 Jan 2011-Nature
TL;DR: It is shown, using angle-resolved photoemission spectroscopy, that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO3 (including the non-doped insulating material) independently of bulk carrier densities over more than seven decades.
Abstract: As silicon is the basis of conventional electronics, so strontium titanate (SrTiO(3)) is the foundation of the emerging field of oxide electronics. SrTiO(3) is the preferred template for the creation of exotic, two-dimensional (2D) phases of electron matter at oxide interfaces that have metal-insulator transitions, superconductivity or large negative magnetoresistance. However, the physical nature of the electronic structure underlying these 2D electron gases (2DEGs), which is crucial to understanding their remarkable properties, remains elusive. Here we show, using angle-resolved photoemission spectroscopy, that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO(3) (including the non-doped insulating material) independently of bulk carrier densities over more than seven decades. This 2DEG is confined within a region of about five unit cells and has a sheet carrier density of ∼0.33 electrons per square lattice parameter. The electronic structure consists of multiple subbands of heavy and light electrons. The similarity of this 2DEG to those reported in SrTiO(3)-based heterostructures and field-effect transistors suggests that different forms of electron confinement at the surface of SrTiO(3) lead to essentially the same 2DEG. Our discovery provides a model system for the study of the electronic structure of 2DEGs in SrTiO(3)-based devices and a novel means of generating 2DEGs at the surfaces of transition-metal oxides.

594 citations


Journal ArticleDOI
18 Oct 2011-ACS Nano
TL;DR: Different applications of rare-earth nanoparticles for biomolecule detection and imaging in vitro, in living cells or in small animals are presented and it is highlighted how chemical composition tuning and surface functionalization lead to specific properties, which can be used for different imaging modalities.
Abstract: Biomedicine and cell and molecular biology require powerful imaging techniques of the single molecule scale to the whole organism, either for fundamental science or diagnosis. These applications are however often limited by the optical properties of the available probes. Moreover, in cell biology, the measurement of the cell response with spatial and temporal resolution is a central instrumental problem. This has been one of the main motivations for the development of new probes and imaging techniques either for biomolecule labeling or detection of an intracellular signaling species. The weak photostability of genetically encoded probes or organic dyes has motivated the interest for different types of nanoparticles for imaging such as quantum dots, nanodiamonds, dye-doped silica particles, or metallic nanoparticles. One of the most active fields of research in the past decade has thus been the development of rare-earth based nanoparticles, whose optical properties and low cytotoxicity are promising for bi...

514 citations


Journal ArticleDOI
TL;DR: In this article, the decomposition of experimental data into dynamic modes using a data-based algorithm is applied to Schlieren snapshots of a helium jet and to time-resolved PIV-measurements of an unforced and harmonically forced jet.
Abstract: The decomposition of experimental data into dynamic modes using a data-based algorithm is applied to Schlieren snapshots of a helium jet and to time-resolved PIV-measurements of an unforced and harmonically forced jet. The algorithm relies on the reconstruction of a low-dimensional inter-snapshot map from the available flow field data. The spectral decomposition of this map results in an eigenvalue and eigenvector representation (referred to as dynamic modes) of the underlying fluid behavior contained in the processed flow fields. This dynamic mode decomposition allows the breakdown of a fluid process into dynamically revelant and coherent structures and thus aids in the characterization and quantification of physical mechanisms in fluid flow.

Proceedings ArticleDOI
06 Nov 2011
TL;DR: This paper proposes simple and easy to compute diagonal preconditioners for the first-order primal-dual algorithm for which convergence of the algorithm is guaranteed without the need to compute any step size parameters.
Abstract: In this paper we study preconditioning techniques for the first-order primal-dual algorithm proposed in [5]. In particular, we propose simple and easy to compute diagonal preconditioners for which convergence of the algorithm is guaranteed without the need to compute any step size parameters. As a by-product, we show that for a certain instance of the preconditioning, the proposed algorithm is equivalent to the old and widely unknown alternating step method for monotropic programming [7]. We show numerical results on general linear programming problems and a few standard computer vision problems. In all examples, the preconditioned algorithm significantly outperforms the algorithm of [5].

Journal ArticleDOI
23 Nov 2011-Cell
TL;DR: It is proposed that this genetic system, which the authors call a "regulatory archipelago," provides an inherent flexibility that may partly underlie the diversity in number and morphology of digits across tetrapods, as well as their resilience to drastic variations.

Journal ArticleDOI
TL;DR: This work systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging, and found glucose and fatty acid metabolism, and redox homeostasis are affected.
Abstract: Aging is characterized by a general decline in cellular function, which ultimately will affect whole body homeostasis. Although DNA damage and oxidative stress all contribute to aging, metabolic dysfunction is a common hallmark of aging at least in invertebrates. Since a comprehensive overview of metabolic changes in otherwise healthy aging mammals is lacking, we here compared metabolic parameters of young and 2 year old mice. We systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging. Among the affected pathways in both liver and muscle we found glucose and fatty acid metabolism, and redox homeostasis. These alterations translated in decreased long chain acylcarnitines and increased free fatty acid levels and a marked reduction in various amino acids in the plasma of aged mice. As such, these metabolites serve as biomarkers for aging and healthspan.

Journal ArticleDOI
14 Oct 2011-Science
TL;DR: Using high-resolution chromatin conformation capture methodology, this work examined the spatial configuration of Hox clusters in embryonic mouse tissues where different Hox genes are active and found that spatial compartmentalization may be key to process the colinear activation of these compact gene clusters.
Abstract: The spatial and temporal control of Hox gene transcription is essential for patterning the vertebrate body axis. Although this process involves changes in histone posttranslational modifications, the existence of particular three-dimensional (3D) architectures remained to be assessed in vivo. Using high-resolution chromatin conformation capture methodology, we examined the spatial configuration of Hox clusters in embryonic mouse tissues where different Hox genes are active. When the cluster is transcriptionally inactive, Hox genes associate into a single 3D structure delimited from flanking regions. Once transcription starts, Hox clusters switch to a bimodal 3D organization where newly activated genes progressively cluster into a transcriptionally active compartment. This transition in spatial configurations coincides with the dynamics of chromatin marks, which label the progression of the gene clusters from a negative to a positive transcription status. This spatial compartmentalization may be key to process the colinear activation of these compact gene clusters.

Journal ArticleDOI
TL;DR: In this paper, the authors present wide-band spectral measurements of coherent transition radiation which they use for temporal characterization and show that the electron beam, produced using controlled optical injection, contains a temporal feature that can be identified as a 15 pC, 1.4-1.8 fs electron bunch (root mean square) leading to a peak current of 3-4 kA depending on the bunch shape.
Abstract: Particle accelerators driven by the interaction of ultraintense and ultrashort laser pulses with a plasma(1) can generate accelerating electric fields of several hundred gigavolts per metre and deliver high-quality electron beams with low energy spread(2-5), low emittance(6) and up to 1 GeV peak energy(7,8). Moreover, it is expected they may soon be able to produce bursts of electrons shorter than those produced by conventional particle accelerators, down to femtosecond durations and less. Here we present wide-band spectral measurements of coherent transition radiation which we use for temporal characterization. Our analysis shows that the electron beam, produced using controlled optical injection(9), contains a temporal feature that can be identified as a 15 pC, 1.4-1.8 fs electron bunch (root mean square) leading to a peak current of 3-4 kA depending on the bunch shape. We anticipate that these results will have a strong impact on emerging applications such as short-pulse and short-wavelength radiation sources(10,11), and will benefit the realization of laboratory-scale free-electron lasers(12-14).

Journal ArticleDOI
TL;DR: In this paper, the authors compute the primordial power spectrum in general multi-field models and show that certain inflaton trajectories may lead to observationally significant imprints of heavy physics in the power spectrum if the inflaton trajectory turns, that is, traverses a bend, sufficiently fast (without interrupting slow roll).
Abstract: The computation of the primordial power spectrum in multi-field inflation models requires us to correctly account for all relevant interactions between adiabatic and non-adiabatic modes around and after horizon crossing. One specific complication arises from derivative interactions induced by the curvilinear trajectory of the inflaton in a multi-dimensional field space. In this work we compute the power spectrum in general multi-field models and show that certain inflaton trajectories may lead to observationally significant imprints of `heavy' physics in the primordial power spectrum if the inflaton trajectory turns, that is, traverses a bend, sufficiently fast (without interrupting slow roll), even in cases where the modes normal to the trajectory have masses approaching the cutoff of our theory. We emphasize that turning is defined with respect to the geodesics of the sigma model metric, irrespective of whether this is canonical or non-trivial. The imprints generically take the form of damped superimposed oscillations on the power spectrum. In the particular case of two-field models, if one of the fields is sufficiently massive compared to the scale of inflation, we are able to compute an effective low energy theory for the adiabatic mode encapsulating certain relevant operators of the full multi-field dynamics. As expected, a particular characteristic of this effective theory is a modified speed of sound for the adiabatic mode which is a functional of the background inflaton trajectory and the turns traversed during inflation. Hence in addition, we expect non-Gaussian signatures directly related to the features imprinted in the power spectrum.

Journal ArticleDOI
A. A. Abdo1, Markus Ackermann2, Marco Ajello2, Alice Allafort2  +173 moreInstitutions (34)
11 Feb 2011-Science
TL;DR: Two separate gamma-ray flares from a young and energetic pulsar powers the well-known Crab Nebula are described and it is suggested that the gamma rays were emitted via synchrotron radiation from peta–electron-volt electrons in a region smaller than 1.4 × 10−2 parsecs.
Abstract: A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Marco Ajello3  +418 moreInstitutions (73)
TL;DR: In this paper, the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation was reported.
Abstract: We report on the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) gamma-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Gamma = 1.78 +/- 0.02 and average photon flux F(>0.3 GeV) = (7.23 +/- 0.16) x 10(-8) ph cm(-2) s(-1). Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor similar to 3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in gamma-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

Journal ArticleDOI
TL;DR: It is shown that realistic extinction rates and diversity trajectories can be inferred from molecular phylogenies, and it is suggested that most extant cetaceans arose from four recent radiations, with a few additional species arising from clades that have been in decline over the last ∼10 Myr.
Abstract: Historical patterns of species diversity inferred from phylogenies typically contradict the direct evidence found in the fossil record. According to the fossil record, species frequently go extinct, and many clades experience periods of dramatic diversity loss. However, most analyses of molecular phylogenies fail to identify any periods of declining diversity, and they typically infer low levels of extinction. This striking inconsistency between phylogenies and fossils limits our understanding of macroevolution, and it undermines our confidence in phylogenetic inference. Here, we show that realistic extinction rates and diversity trajectories can be inferred from molecular phylogenies. To make this inference, we derive an analytic expression for the likelihood of a phylogeny that accommodates scenarios of declining diversity, time-variable rates, and incomplete sampling; we show that this likelihood expression reliably detects periods of diversity loss using simulation. We then study the cetaceans (whales, dolphins, and porpoises), a group for which standard phylogenetic inferences are strikingly inconsistent with fossil data. When the cetacean phylogeny is considered as a whole, recently radiating clades, such as the Balaneopteridae, Delphinidae, Phocoenidae, and Ziphiidae, mask the signal of extinctions. However, when isolating these groups, we infer diversity dynamics that are consistent with the fossil record. These results reconcile molecular phylogenies with fossil data, and they suggest that most extant cetaceans arose from four recent radiations, with a few additional species arising from clades that have been in decline over the last ∼10 Myr.

Journal ArticleDOI
TL;DR: In this article, the authors consider the eigenvalues and eigenvectors of finite, low-rank perturbations of random matrices and uncover a phase transition phenomenon whereby the large matrix limit of the extreme eigen values of the perturbed matrix differs from that of the original matrix if and only if the eigvalues of the matrix are above a certain critical threshold.

Journal ArticleDOI
TL;DR: Embryonic, foetal and adult stem cells in osteogenesis, specific features of bone cells needed to be advantageous for clinical use, and the development of therapeutic biological agents.
Abstract: This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.

Journal ArticleDOI
TL;DR: A liquid droplet placed on a hot surface can levitate, and moreover, self-propel if the surface is textured as discussed by the authors, which means that the properties of the liquid are irrelevant.
Abstract: A liquid droplet placed on a hot surface can levitate, and moreover, self-propel if the surface is textured. Solids can similarly self-propel, which means that the properties of the liquid are irrelevant. Rather, it is the vapour beneath the drop that does the propelling.

Journal ArticleDOI
Eric Strobl1
TL;DR: In this paper, the authors estimate the impact of hurricane strikes on local economic growth rates and construct a novel hurricane destruction index that is based on a monetary loss equation, local wind speed estimates derived from a physical wind field model, and local exposure characteristics.
Abstract: I estimate the impact of hurricane strikes on local economic growth rates. To this end, I assemble a panel data set of U.S. coastal counties' growth rates and construct a novel hurricane destruction index that is based on a monetary loss equation, local wind speed estimates derived from a physical wind field model, and local exposure characteristics. The econometric results suggest that a county's annual economic growth rate falls on average by 0.45 percentage points, 28% of it due to richer individuals moving away from affected counties. I also find that the impact of hurricanes is netted out in annual terms at the state level and does not affect national economic growth rates at all.

Journal ArticleDOI
TL;DR: AffineSIFT (ASIFT), simulates a set of sample views of the initial images, obtainable by varying the two camera axis orientation parameters, namely the latitude and the longitude angles, which are not treated by the SIFT method.
Abstract: If a physical object has a smooth or piecewise smooth boundary, its images obtained by cameras in varying positions undergo smooth apparent deformations. These deformations are locally well approximated by affine transforms of the image plane. In consequencethe solid object recognition problem has often been led back to the computation of affine invariant image local features. The similarity invariance (invariance to translation, rotation, and zoom) is dealt with rigorously by the SIFT method The method illustrated and demonstrated in this work, AffineSIFT (ASIFT), simulates a set of sample views of the initial images, obtainable by varying the two camera axis orientation parameters, namely the latitude and the longitude angles, which are not treated by the SIFT method. Then it applies the SIFT method itself to all images thus generated. Thus, ASIFT covers effectively all six parameters of the affine transform. Source Code The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL web page of this article 1 .

Journal ArticleDOI
29 Sep 2011-Polymer
TL;DR: In this paper, a highly deacetylated (97.5%) chitosan in 50% acetic acid was electrospun at moderate temperatures (25-70°C) in the presence of a low content of polyethylene oxide (10 wt% PEO) to beadless nanofibers of 60-80nm in diameter.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a method to calculate the mixing parameter from the electronic density alone, which is able to cut the error of traditional hybrid functionals for large and small gap materials, while retaining a good description of the structural properties.
Abstract: A very popular ab initio scheme to calculate electronic properties in solids is the use of hybrid functionals in density functional theory (DFT) that mixes a portion of the Fock exchange with DFT functionals. In spite of its success, a major problem still remains, related to the use of one single mixing parameter for all materials. Guided by physical arguments that connect the mixing parameter to the dielectric properties of the solid, and ultimately to its band gap, we propose a method to calculate this parameter from the electronic density alone. This approach is able to cut significantly the error of traditional hybrid functionals for large and small gap materials, while retaining a good description of the structural properties. Moreover, its implementation is simple and leads to a negligible increase of the computational time.

Journal ArticleDOI
TL;DR: In this paper, a search for events with jets and missing transverse energy is performed in a data sample of pp collisions collected at 7 TeV by the CMS experiment at the LHC.
Abstract: A search for events with jets and missing transverse energy is performed in a data sample of pp collisions collected at sqrt(s) = 7 TeV by the CMS experiment at the LHC. The analyzed data sample corresponds to an integrated luminosity of 1.14 inverse femtobarns. In this search, a kinematic variable, alphaT, is used as the main discriminator between events with genuine and misreconstructed missing transverse energy. No excess of events over the standard model expectation is found. Exclusion limits in the parameter space of the constrained minimal supersymmetric extension of the standard model are set. In this model, squark masses below 1.1 TeV are excluded at 95% CL. Gluino masses below 1.1 TeV are also ruled out at 95% CL for values of the universal scalar mass parameter below 500 GeV.

Journal ArticleDOI
TL;DR: In this article, the authors compared the energy consumption of conventional ozonation and the AOPs O(3)/H(2)O(2), and UV/H( 2)O (2) for transformation of organic micropollutants, namely atrazine (ATR), sulfamethoxazole (SMX) and N-nitrosodimethylamine (NDMA), in three lakes and a wastewater.

Journal ArticleDOI
TL;DR: The modeling part of this guide concludes with a brief introduction into efficient implementations of nonlinear medium responses, and several worked-out simulation examples designed to highlight numerical and modeling issues, and to teach numerical-experiment practices.
Abstract: The purpose of this article is to provide practical introduction into numerical modeling of ultrashort optical pulses in extreme nonlinear regimes The theoretic background section covers derivation of modern pulse propagation models starting from Maxwell’s equations, and includes both envelope-based models and carrier-resolving propagation equations We then continue with a detailed description of implementation in software of Nonlinear Envelope Equations as an example of a mixed approach which combines finite-difference and spectral techniques Fully spectral numerical solution methods for the Unidirectional Pulse Propagation Equation are discussed next The modeling part of this guide concludes with a brief introduction into efficient implementations of nonlinear medium responses Finally, we include several worked-out simulation examples These are mini-projects designed to highlight numerical and modeling issues, and to teach numerical-experiment practices They are also meant to illustrate, first and foremost for a non-specialist, how tools discussed in this guide can be applied in practical numerical modeling