scispace - formally typeset
Search or ask a question
Institution

I.M. Sechenov First Moscow State Medical University

EducationMoscow, Russia
About: I.M. Sechenov First Moscow State Medical University is a education organization based out in Moscow, Russia. It is known for research contribution in the topics: Medicine & Population. The organization has 7984 authors who have published 9355 publications receiving 68997 citations.
Topics: Medicine, Population, Cancer, Disease, Blood pressure


Papers
More filters
Journal ArticleDOI
01 Apr 2019-Talanta
TL;DR: The ultimate goal of the study is to present a method of authentication of hard-shell capsules of medicines packed in polyvinylchloride (PVC) blisters without damaging the primary packaging by collecting NIR spectra in a non-invasive mode and subsequent analysis of measurements by a one-class classification procedure.

33 citations

Journal ArticleDOI
TL;DR: This paper focuses on brain health and provides an overview of climate change impacts on risk factors specific to brain diseases and disorders and discusses emerging hazards in brain health due to mitigation and adaptation strategies in response to climate changes.

33 citations

Journal ArticleDOI
23 Apr 2020
TL;DR: A practical algorithm was developed that allowed quick configuration of the laser printing process on an applied experimental setup and demonstrated that in the optimal jetting regime, which led to printing with single droplets, the size and volume of droplets transferred to the acceptor slide increased almost linearly with the increase of laser fluence.
Abstract: Laser-induced forward transfer is a versatile, non-contact, and nozzle-free printing technique which has demonstrated high potential for different printing applications with high resolution. In this article, three most widely used hydrogels in bioprinting (2% hyaluronic acid sodium salt, 1% methylcellulose, and 1% sodium alginate) were used to study laser printing processes. For this purpose, the authors applied a laser system based on a pulsed infrared laser (1064 nm wavelength, 8 ns pulse duration, 1 - 5 J/cm2 laser fluence, and 30 μm laser spot size). A high-speed shooting showed that the increase in fluence caused a sequential change in the transfer regimes: No transfer regime, optimal jetting regime with a single droplet transfer, high speed regime, turbulent regime, and plume regime. It was demonstrated that in the optimal jetting regime, which led to printing with single droplets, the size and volume of droplets transferred to the acceptor slide increased almost linearly with the increase of laser fluence. It was also shown that the maintenance of a stable temperature (±2°C) allowed for neglecting the temperature-induced viscosity change of hydrogels. It was determined that under room conditions (20°C, humidity 50%), the hydrogel layer, due to drying processes, decreased with a speed of about 8 μm/min, which could lead to a temporal variation of the transfer process parameters. The authors developed a practical algorithm that allowed quick configuration of the laser printing process on an applied experimental setup. The configuration is provided by the change of the easily tunable parameters: Laser pulse energy, laser spot size, the distance between the donor ribbon and acceptor plate, as well as the thickness of the hydrogel layer on the donor ribbon slide.

33 citations

Journal ArticleDOI
TL;DR: The present review evaluates the recent chemical and biochemical advances with particular importance on the endogenous compounds present at the time of death and their modification over time, which are valuable for the PMI prediction and to identify the cause of death.

33 citations

Journal ArticleDOI
TL;DR: The 2.26-A resolution crystal structure of α9-ECD in complex with α-conotoxin (α-Ctx) RgIA, a potential drug for chronic pain, was reported in this paper.
Abstract: The α9 subunit of nicotinic acetylcholine receptors (nAChRs) exists mainly in heteropentameric assemblies with α10. Accumulating data indicate the presence of three different binding sites in α9α10 nAChRs: the α9(+)/α9(-), the α9(+)/α10(-), and the α10(+)/α9(-). The major role of the principal (+) side of the extracellular domain (ECD) of α9 subunit in binding of the antagonists methyllylcaconitine and α-bungarotoxin was shown previously by the crystal structures of the monomeric α9-ECD with these molecules. Here we present the 2.26-A resolution crystal structure of α9-ECD in complex with α-conotoxin (α-Ctx) RgIA, a potential drug for chronic pain, the first structure reported for a complex between an nAChR domain and an α-Ctx. Superposition of this structure with those of other α-Ctxs bound to the homologous pentameric acetylcholine binding proteins revealed significant similarities in the orientation of bound conotoxins, despite the monomeric state of the α9-ECD. In addition, ligand-binding studies calculated a binding affinity of RgIA to the α9-ECD at the low micromolar range. Given the high identity between α9 and α10 ECDs, particularly at their (+) sides, the presented structure was used as template for molecular dynamics simulations of the ECDs of the human α9α10 nAChR in pentameric assemblies. Our results support a favorable binding of RgIA at α9(+)/α9(-) or α10(+)/α9(-) rather than the α9(+)/α10(-) interface, in accordance with previous mutational and functional data.

33 citations


Authors

Showing all 8045 results

NameH-indexPapersCitations
Yehuda Shoenfeld125162977195
Jatin P. Shah11972545680
Shahrokh F. Shariat118163758900
Vladimir P. Torchilin10962758977
Klaus-Peter Lesch10652450099
Jürgen Kurths105103862179
Rudolf Valenta10274838349
Valerian E. Kagan9766739888
Hans-Uwe Simon9646151698
Gleb B. Sukhorukov9644035549
Michael Aschner9180632826
Alexei Verkhratsky8945029788
Claudio L. Bassetti8852425332
Helgi B. Schiöth8553128628
Angelo Ravelli7941523439
Network Information
Related Institutions (5)
Eli Lilly and Company
22.8K papers, 946.7K citations

77% related

Moscow State University
123.3K papers, 1.7M citations

76% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

76% related

Boehringer Ingelheim
14.8K papers, 481.6K citations

75% related

University of Verona
29.9K papers, 968.9K citations

75% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
2022102
20212,198
20202,343
20191,649
20181,064