scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Ropar

EducationRopar, India
About: Indian Institute of Technology Ropar is a education organization based out in Ropar, India. It is known for research contribution in the topics: Catalysis & Computer science. The organization has 1014 authors who have published 2878 publications receiving 35715 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated hydrogen embrittlement of steel pipelines originally designed for natural gas transportation is investigated based on solubility, permeation and diffusion phenomena of hydrogen molecules into the crystalline lattice structure of the pipeline material.
Abstract: Blending hydrogen into natural gas pipelines is a recent alternative adopted for hydrogen transportation as a mixture with natural gas. In this paper, hydrogen embrittlement of steel pipelines originally designed for natural gas transportation is investigated. Solubility, permeation and diffusion phenomena of hydrogen molecules into the crystalline lattice structure of the pipeline material are followed up based on transient evolution of internal pressure applied on the pipeline wall. The transient regime is created through changes of gas demand depending on daily consumptions. As a result, the pressure may reach excessive values that lead to the acceleration of hydrogen solubility and its diffusion through the pipeline wall. Furthermore, permeation is an important parameter to determine the diffusion amount of hydrogen inside the pipeline wall resulting in the embrittlement of the material. The numerical obtained results have shown that using pipelines designed for natural gas conduction to transport hydrogen is a risky choice. Actually, added to overpressure and great fluctuations during transients that may cause fatigue and damage the structure, also the latter pressure evolution is likely to induce the diffusion phenomena of hydrogen molecules into the lattice of the structure leading to brittle the pipe material. The numerical simulation reposes on solving partial differential equations describing transient gas flow in pipelines coupled with the diffusion equation for mass transfer. The model is built using the finite elements based software COMSOL Multiphysics considering different cases of pipe material; API X52 (base metal and nutrided) and API X80 steels. Obtained results allowed tracking the evolution with time of hydrogen concentration through the pipeline internal wall based on the pressure variation due to transient gas flow. Such observation permits to estimate the amount of hydrogen diffused in the metal to avoid leakage of this flammable gas. Thus, precautions may be taken to prevent explosive risks due to hydrogen embrittlement of steel pipelines, among other effects, that can lead to alter safe conditions of gas conduction.

27 citations

Journal ArticleDOI
TL;DR: In this article, three new Cd(II) metal-organic networks were constructed using mixed ligand systems at room temperature and characterized by single-crystal X-ray diffraction and other physicochemical methods.
Abstract: Three new Cd(II) metal–organic networks, [{Cd(muco)(bpa)1.5}·H2O] (1), [{Cd(muco)(bpee)1.5}·7H2O] (2) and [Cd(muco)(4bpdh)·(H2O)] (3) (where, muco = trans, trans-muconate dianion, bpa = 1,2-bis(4-pyridyl)ethane, bpee = 1,2-bis(4-pyridyl)ethylene and 4bpdh = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) have been constructed using mixed ligand systems at room temperature and characterized by single-crystal X-ray diffraction and other physicochemical methods. Compounds 1 and 2 are isostructural featuring a 3D framework structure with a 5-connected, {66} net topology. Whereas, compound 3 possess an interesting 3-fold interwoven 2D network with a 4-connected, {44,62}-sql net topology. Photoluminescence measurements revealed emissions from all the three compounds owing to ligand based charge transfer (n → π* and π → π*) transitions. Catalytic investigations of the compounds for the Knoevenagel reaction unveiled the higher catalytic activity of 3 compared to that of 1 and 2. The higher catalytic performance of 3 has been attributed due to the presence of the basic azine-functionalized pore surface. Remarkably, the catalyst can be facilely separated from the reaction mixture and could be reused without significant degradation in the catalytic activity for five cycles. Compound 3 is a rare example of a 3-fold interwoven 2D network acting as an efficient recyclable heterogeneous catalyst for the Knoevenagel reaction.

27 citations

Journal ArticleDOI
TL;DR: In this article, coherent control of nonlinear absorption of intense laser fields in four-level atomic systems was explored. And the authors showed that the threshold of the optical bistability can be modified by suitable choices of the coupling and the control fields.
Abstract: We explore the coherent control of nonlinear absorption of intense laser fields in four-level atomic systems. For instance, in a four-level ladder system, a coupling field creates electromagnetically induced transparency (EIT) with an Aulter-Townes doublet for the probe field while the control field is absent. A large absorption peak appears at resonance as the control field is switched on. We show how such a large absorption leads to optical switching. Further, this large absorption diminishes and a transparency window appears due to the saturation effects as the strength of the probe field is increased. We further demonstrate that the threshold of the optical bistability can be modified by suitable choices of the coupling and the control fields. In a four-level $\mathsf{Y}$-type configuration, the effect of the control field on saturable absorption (SA) and reverse saturable absorption (RSA) is highlighted in the context of nonlinear absorption of the probe field. We achieve RSA and SA in a simple atomic system just by applying a control field.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the modal strain energy method is used to find the optimal location for the application of ACLD/PCLD patches for specific modes and the information for different modes is then collated to get the best locations for control of multiple modes.

27 citations

Journal ArticleDOI
17 Jul 2018
TL;DR: A RuO2-supported Mn3O4 catalyst is reported for the selective oxidation reaction of carbohydrate-derived 5-hydroxymethylfurfural, furfuryl alcohol, and various aromatic and aliphatic compounds to the corresponding aldehyde in good to excellent yield.
Abstract: Selective catalytic oxidation of carbohydrate-derived 5-hydroxymethylfurfural, furfuryl alcohol, and various aromatic and aliphatic compounds to the corresponding aldehyde is a challenging task. The development of a sustainable heterogeneous catalyst is crucial in achieving high selectivity for the desired aldehyde, especially using O2 or air. In this study, a RuO2-supported Mn3O4 catalyst is reported for the selective oxidation reaction. Treatment of MnO2 molecular sieves with RuCl3 in aqueous formaldehyde solution gives a new type of RuO2-supported Mn3O4 catalyst. Detailed catalyst characterization using powder X-ray diffraction, N2 adsorption, scanning and transmission electron microscopes, diffuse reflectance UV–visible spectrometer, and X-ray photoelectron spectroscopy proves that the RuO2 species are dispersed on the highly crystalline Mn3O4 surface. This catalytic conversion process involves molecular oxygen or air (flow, 10 mL/min) as an oxidant. No external oxidizing reagent, additive, or cocatal...

27 citations


Authors

Showing all 1056 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Rajeev Ahuja85107232325
Surya Prakash Singh5573612989
Christopher C. Berndt542579941
S. Sitharama Iyengar5377613751
Sarit K. Das5227317410
R.P. Chhabra502888299
Narinder Singh454529028
Rajendra Srivastava441927153
Shirish H. Sonawane442245544
Dharmendra Tripathi371884298
Partha Pratim Roy364045505
Harpreet Singh352384090
Namita Singh342194217
Javed N. Agrewala321123073
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Royal Institute of Technology
68.4K papers, 1.9M citations

91% related

Indian Institute of Science
62.4K papers, 1.2M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202327
202292
2021541
2020468
2019402
2018355