scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Ropar

EducationRopar, India
About: Indian Institute of Technology Ropar is a education organization based out in Ropar, India. It is known for research contribution in the topics: Catalysis & Computer science. The organization has 1014 authors who have published 2878 publications receiving 35715 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A tripodal receptor R1 with a combination of nitrogen and oxygen-based binding sites was designed and used for the selective determination of Cu2+ in this paper, indicating high selectivity among other metal ions.

15 citations

Journal ArticleDOI
TL;DR: Three heuristic algorithms: minimum distance, minimum load, and minimum hop distance and load (MHDL) are proposed and simulation results reveal that the MHDL heuristic performs better as compared to other scheduling policies in the fog computing environment while meeting application privacy requirements.
Abstract: Fog networks have attracted the attention of researchers recently. The idea is that a part of the computation of a job/application can be performed by fog devices that are located at the network edge, close to the users. Executing latency sensitive applications on the cloud may not be feasible, owing to the significant communication delay involved between the user and the cloud data center (cdc). By the time the application traverses the network and reaches the cloud data center, it might already be too late. However, fog devices, also known as mobile data centers (mdcs), are capable of executing such latency sensitive applications. In this paper, we study the problem of balancing the application load while taking account of security constraints of jobs, across various mdcs in a fog network. In case a particular mdc does not have sufficient capacity to execute a job, the job needs to be migrated to some other mdc. To this end, we propose three heuristic algorithms: minimum distance, minimum load, and minimum hop distance and load (MHDL). In addition, we also propose an ILP‐based algorithm called load balancing aware scheduling ILP (LASILP) for solving the task mapping and scheduling problem. The performance of the proposed algorithms have been compared with the cloud only algorithm and another heuristic algorithm called fog‐cloud‐placement (FCP). Simulation results performed on real‐life workload traces reveal that the MHDL heuristic performs better as compared to other scheduling policies in the fog computing environment while meeting application privacy requirements.

15 citations

Journal ArticleDOI
TL;DR: A multiple species–multiple resource competition model is presented which is based on the concept of synthesizing unit to formulate the growth rates of species competing for interactive essential resources and yields a periodic state where more species than limiting complementary resources can coexist (supersaturation) in a homogeneous environment.
Abstract: During the last two decades, the simple view of resource limitation by a single resource has been changed due to the realization that co-limitation by multiple resources is often an important determinant of species growth. Hence, the multiple resource limitation hypothesis needs to be taken into account, when communities of species competing for resources are considered. We present a multiple species–multiple resource competition model which is based on the concept of synthesizing unit to formulate the growth rates of species competing for interactive essential resources. Using this model, we demonstrate that a more mechanistic explanation of interactive effects of co-limitation may lead to the known complex dynamics including nonequilibrium states as oscillations and chaos. We compare our findings with earlier investigations on biological mechanisms that can predict the outcome of multispecies competition. Moreover, we show that this model yields a periodic state where more species than limiting complementary resources can coexist (supersaturation) in a homogeneous environment. We identify two novel mechanisms, how such a state can emerge: a transcritical bifurcation of a limit cycle and a transition from a heteroclinic cycle. Furthermore, we demonstrate the robustness of the phenomenon of supersaturation when the environmental conditions are varied.

15 citations

Journal ArticleDOI
TL;DR: In this paper , molecular biocompatibility of AgNP is mediated through channelized intrinsic AgNP-proteins interaction in steatosis and apoptosis, and it is shown that AgNP protein-protein interaction is beneficial in both cases.

15 citations


Authors

Showing all 1056 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Rajeev Ahuja85107232325
Surya Prakash Singh5573612989
Christopher C. Berndt542579941
S. Sitharama Iyengar5377613751
Sarit K. Das5227317410
R.P. Chhabra502888299
Narinder Singh454529028
Rajendra Srivastava441927153
Shirish H. Sonawane442245544
Dharmendra Tripathi371884298
Partha Pratim Roy364045505
Harpreet Singh352384090
Namita Singh342194217
Javed N. Agrewala321123073
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Royal Institute of Technology
68.4K papers, 1.9M citations

91% related

Indian Institute of Science
62.4K papers, 1.2M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202327
202292
2021541
2020468
2019402
2018355