scispace - formally typeset
Search or ask a question
Institution

Jilin University

EducationChangchun, China
About: Jilin University is a education organization based out in Changchun, China. It is known for research contribution in the topics: Catalysis & Apoptosis. The organization has 101453 authors who have published 88966 publications receiving 1444456 citations. The organization is also known as: Jílín Dàxué.
Topics: Catalysis, Apoptosis, Cancer, Adsorption, Cell growth


Papers
More filters
Journal ArticleDOI
TL;DR: Electrochemical tests reveal that the as-formed Ru@CQDs exhibits excellent catalytic behavior with an onset overpotential of 0 mV, a Tafel slope of 47 mV decade-1, and good durability, which is superior to the current commercial Pt/C and most noble metals, non-noble metals, and nonmetallic catalysts under basic conditions.
Abstract: Highly active, stable, and cheap Pt-free catalysts for the hydrogen evolution reaction (HER) are facing increasing demand as a result of their potential use in future energy-conversion systems. However, the development of HER electrocatalysts with Pt-like or even superior activity, in particular ones that can function under alkaline conditions, remains a significant challenge. Here, the synthesis of a novel carbon-loaded ruthenium nanoparticle electrocatalyst (Ru@CQDs) for the HER, using carbon quantum dots (CQDs), is reported. Electrochemical tests reveal that, even under extremely alkaline conditions (1 m KOH), the as-formed Ru@CQDs exhibits excellent catalytic behavior with an onset overpotential of 0 mV, a Tafel slope of 47 mV decade-1 , and good durability. Most importantly, it only requires an overpotential of 10 mV to achieve the current density of 10 mA cm-2 . Such catalytic characteristics are superior to the current commercial Pt/C and most noble metals, non-noble metals, and nonmetallic catalysts under basic conditions. These findings open a new field for the application of CQDs and add to the growing family of metal@CQDs with high HER performance.

417 citations

Journal ArticleDOI
Hao Zhang1, Jianchao Feng1, Teng Fei1, Sen Liu1, Tong Zhang1 
TL;DR: In this article, a gas sensor was fabricated using SnO2-rGO nanocomposites as sensing materials and investigated for detection of NO2 at low operating temperature (50°C).
Abstract: SnO2 nanoparticles-reduced graphene oxide (SnO2-rGO) nanocomposites have been successfully prepared by a facile method via hydrothermal treatment of aqueous dispersion of GO in the presence of Sn salts. The combined characterizations including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) indicate the successful formation of SnO2-rGO nanocomposites. To demonstrate the product on sensing application, gas sensors are fabricated using SnO2-rGO nanocomposites as sensing materials and investigated for detection of NO2 at low operating temperature (50 °C). It is found that SnO2-rGO nanocomposites exhibit high response of 3.31 at 5 ppm NO2, which is much higher than that of rGO (1.13), and rapid response, good selectivity and reproducibility. Furthermore, the reason for enhancing sensing performance by addition of SnO2 nanoparticles has also been discussed.

416 citations

Journal ArticleDOI
TL;DR: The synthesis of polyarylether-based covalent organic frameworks (PAE-COFs) with high crystallinity, porosity and chemical stability, as well as good stability against harsh chemical environments including boiling water and strong acids and bases are reported.
Abstract: The development of crystalline porous materials with high chemical stability is of paramount importance for their practical application. Here, we report the synthesis of polyarylether-based covalent organic frameworks (PAE-COFs) with high crystallinity, porosity and chemical stability, including towards water, owing to the inert nature of their polyarylether-based building blocks. The PAE-COFs are synthesized through nucleophilic aromatic substitution reactions between ortho-difluoro benzene and catechol building units, which form ether linkages. The resulting materials are shown to be stable against harsh chemical environments including boiling water, strong acids and bases, and oxidation and reduction conditions. Their stability surpasses the performance of other known crystalline porous materials such as zeolites, metal-organic frameworks and covalent organic frameworks. We also demonstrate the post-synthetic functionalization of these materials with carboxyl or amino functional groups. The functionalized PAE-COFs combine porosity, high stability and recyclability. A preliminary application of these materials is demonstrated with the removal of antibiotics from water over a wide pH range.

414 citations

Journal ArticleDOI
TL;DR: In this paper, the enhancement of CO sensitivity in the Al doped graphene is determined by a large electrical conductivity change after adsorption, where CO absorption leads to increase of electrical conductivities via introducing large amount of shallow acceptor states.

412 citations


Authors

Showing all 101943 results

NameH-indexPapersCitations
Yang Yang1712644153049
Yury Gogotsi171956144520
Lei Jiang1702244135205
Gang Chen1673372149819
Dongyuan Zhao160872106451
Rui Zhang1512625107917
Xiaodong Wang1351573117552
Avelino Corma134104989095
Jie Liu131153168891
Shuai Liu129109580823
Yang Liu1292506122380
Sheng Dai12298563472
Xin Wang121150364930
Simon A. Wilde11839045547
Shaojun Dong11887357337
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Peking University
181K papers, 4.1M citations

93% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023187
20221,197
20218,629
20208,607
20198,049
20186,868