scispace - formally typeset
Search or ask a question
Institution

Jilin University

EducationChangchun, China
About: Jilin University is a education organization based out in Changchun, China. It is known for research contribution in the topics: Catalysis & Apoptosis. The organization has 101453 authors who have published 88966 publications receiving 1444456 citations. The organization is also known as: Jílín Dàxué.
Topics: Catalysis, Apoptosis, Cancer, Adsorption, Cell growth


Papers
More filters
Journal ArticleDOI
TL;DR: A method for crystal structure prediction from ``scratch'' through particle-swarm optimization (PSO) algorithm within the evolutionary scheme and illustrates the promise of PSO as a major technique on crystal structure determination.
Abstract: We have developed a method for crystal structure prediction from ``scratch'' through particle-swarm optimization (PSO) algorithm within the evolutionary scheme. PSO technique is different with the genetic algorithm and has apparently avoided the use of evolution operators (e.g., crossover and mutation). The approach is based on an efficient global minimization of free-energy surfaces merging total-energy calculations via PSO technique and requires only chemical compositions for a given compound to predict stable or metastable structures at given external conditions (e.g., pressure). A particularly devised geometrical structure parameter which allows the elimination of similar structures during structure evolution was implemented to enhance the structure search efficiency. The application of designed variable unit-cell size technique has greatly reduced the computational cost. Moreover, the symmetry constraint imposed in the structure generation enables the realization of diverse structures, leads to significantly reduced search space and optimization variables, and thus fastens the global structure convergence. The PSO algorithm has been successfully applied to the prediction of many known systems (e.g., elemental, binary, and ternary compounds) with various chemical-bonding environments (e.g., metallic, ionic, and covalent bonding). The high success rate demonstrates the reliability of this methodology and illustrates the promise of PSO as a major technique on crystal structure determination.

1,963 citations

Journal ArticleDOI
TL;DR: A critical appraisal of different synthetic approaches to Cu and Cu-based nanoparticles and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis.
Abstract: The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications i...

1,823 citations

Journal ArticleDOI
TL;DR: This review presents a brief introduction of the available molecular docking methods, and their development and applications in drug discovery, and a recently developed local move Monte Carlo based approach is introduced.
Abstract: Molecular docking has become an increasingly important tool for drug discovery. In this review, we present a brief introduction of the available molecular docking methods, and their development and applications in drug discovery. The relevant basic theories, including sampling algorithms and scoring functions, are summarized. The differences in and performance of available docking software are also discussed. Flexible receptor molecular docking approaches, especially those including backbone flexibility in receptors, are a challenge for available docking methods. A recently developed Local Move Monte Carlo (LMMC) based approach is introduced as a potential solution to flexible receptor docking problems. Three application examples of molecular docking approaches for drug discovery are provided.

1,787 citations

Journal ArticleDOI
TL;DR: It remains to make clear whether the potential invasion of SARS‐CoV2 is partially responsible for the acute respiratory failure of patients with COVID‐19, which emerged in December 2019 in Wuhan, China and rapidly spreads around the world.
Abstract: Following the severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), another highly pathogenic coronavirus named SARS-CoV-2 (previously known as 2019-nCoV) emerged in December 2019 in Wuhan, China, and rapidly spreads around the world. This virus shares highly homological sequence with SARS-CoV, and causes acute, highly lethal pneumonia coronavirus disease 2019 (COVID-19) with clinical symptoms similar to those reported for SARS-CoV and MERS-CoV. The most characteristic symptom of patients with COVID-19 is respiratory distress, and most of the patients admitted to the intensive care could not breathe spontaneously. Additionally, some patients with COVID-19 also showed neurologic signs, such as headache, nausea, and vomiting. Increasing evidence shows that coronaviruses are not always confined to the respiratory tract and that they may also invade the central nervous system inducing neurological diseases. The infection of SARS-CoV has been reported in the brains from both patients and experimental animals, where the brainstem was heavily infected. Furthermore, some coronaviruses have been demonstrated able to spread via a synapse-connected route to the medullary cardiorespiratory center from the mechanoreceptors and chemoreceptors in the lung and lower respiratory airways. Considering the high similarity between SARS-CoV and SARS-CoV2, it remains to make clear whether the potential invasion of SARS-CoV2 is partially responsible for the acute respiratory failure of patients with COVID-19. Awareness of this may have a guiding significance for the prevention and treatment of the SARS-CoV-2-induced respiratory failure.

1,770 citations

Journal ArticleDOI
28 Jan 2020-ACS Nano
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Abstract: The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

1,768 citations


Authors

Showing all 101943 results

NameH-indexPapersCitations
Yang Yang1712644153049
Yury Gogotsi171956144520
Lei Jiang1702244135205
Gang Chen1673372149819
Dongyuan Zhao160872106451
Rui Zhang1512625107917
Xiaodong Wang1351573117552
Avelino Corma134104989095
Jie Liu131153168891
Shuai Liu129109580823
Yang Liu1292506122380
Sheng Dai12298563472
Xin Wang121150364930
Simon A. Wilde11839045547
Shaojun Dong11887357337
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Peking University
181K papers, 4.1M citations

93% related

Fudan University
117.9K papers, 2.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023187
20221,197
20218,629
20208,607
20198,049
20186,868