scispace - formally typeset
Search or ask a question
Institution

Joint Global Change Research Institute

FacilityRiverdale Park, Maryland, United States
About: Joint Global Change Research Institute is a facility organization based out in Riverdale Park, Maryland, United States. It is known for research contribution in the topics: Greenhouse gas & Climate change. The organization has 197 authors who have published 934 publications receiving 62390 citations.


Papers
More filters
Posted ContentDOI
11 Apr 2023
TL;DR: In this article , the authors examined the sensitivity of model results to the assumed height of SO2 injection, seasonality of SO 2 and BC emissions, and the assumed fraction of emissions that is injected into the atmosphere as SO4 in 11 climate and chemistry models, including both chemical transport models and the atmospheric component of Earth system models.
Abstract: Abstract. Anthropogenic emissions of aerosols and precursor compounds are known to significantly affect the energy balance of the Earth-atmosphere system, alter the formation of clouds and precipitation, and have substantial impact on human health and the environment. Global models are an essential tool for examining the impacts of these emissions. In this study, we examine the sensitivity of model results to the assumed height of SO2 injection, seasonality of SO2 and BC emissions, and the assumed fraction of SO2 emissions that is injected into the atmosphere as SO4 in 11 climate and chemistry models, including both chemical transport models and the atmospheric component of Earth system models. We find a large variation in atmospheric lifetime across models for SO2, SO4, and BC, with a particularly large relative variation for SO2, which indicates that fundamental aspects of atmospheric sulfur chemistry remain uncertain. Of the perturbations examined in this study, the assumed height of SO2 injection had the largest overall impacts, particularly on global mean net radiative flux (maximum difference of -0.35 W m-2), SO2 lifetime over northern hemisphere land (maximum difference of 0.8 days), surface SO2 concentration (up to 59 % decrease), and surface sulfate concentration (up to 23 % increase). Emitting SO2 at height consistently increased SO2 and SO4 column burdens and shortwave cooling, with varying magnitudes, but had inconsistent effects across models on the sign of the change in implied cloud forcing. The assumed SO4 emission fraction also had a significant impact on net radiative flux and surface sulfate concentration. Because these properties are not standardized across models this is a source of inter-model diversity typically neglected in model intercomparisons. These results imply a need to assure that anthropogenic emission injection height and SO4 emission fraction are accurately and consistently represented in global models.
Peer ReviewDOI
22 Jan 2022
TL;DR: In this paper , the DeNitrification DeCompostion (DNDC) model was used to estimate soil nitrogen emissions, with a function taking into account soil copper contamination in nitrate production control.
Abstract: Abstract. Continental biogeochemical models are commonly used to predict the effect of land use, exogenous organic matter input or climate change on soil greenhouse gas emission. However, they cannot be used for this purpose to investigate the effect of soil contamination, while contamination affects several soil processes and concerns a large fraction of land surface. For that, in this study we implemented a commonly used model estimating soil nitrogen (N) emissions, the DeNitrification DeCompostion (DNDC) model, with a function taking into account soil copper (Cu) contamination in nitrate production control. Then, we aimed at using this model to predict N2O-N, NO2-N, NO-N and NH4-N emissions in the presence of contamination and in the context of changes in precipitations. Initial incubations of soils were performed at different soil moisture levels in order to mimic expected rainfall patterns during the next decades and in particular drought and excess of water. Then, a bioassay was used in the absence or presence of Cu to assess the effect of the single (moisture) or double stress (moisture and Cu) on soil nitrate production. Data of nitrate production obtained through a gradient of Cu under each initial moisture incubation were used to parameterise the DNDC model and to estimate soil N emission considering the various effects of Cu. Whatever the initial moisture incubation, experimental results showed a NO3-N decreasing production when Cu was added but depending on soil moisture. The DNDC-Cu version we proposed was able to reproduce these observed Cu effects on soil nitrate concentration with r2 > 0.99 and RMSE < 10 % for all treatments in the DNDC-Cu calibration range (> 40 % of the water holding capacity) but showed poor performances for the dry treatments. We modelled a Cu effect inducing an increase in NH4-N soil concentration and emissions due to a reduced nitrification activity and therefore a decrease in NO3-N, N2O-N and NOx-N concentrations and emissions. The effect of added Cu predicted by the model was larger on N2-N and N2O-N emissions than on the other N species and larger for the soils incubated under constant than variable moisture. Our work shows that soil contamination can be considered in continental biogeochemical models to better predict soil greenhouse gas emissions.
Posted ContentDOI
27 Mar 2022
TL;DR: Hector as discussed by the authors is a carbon/climate model capable of emulating Earth System Model outputs at the global scale and is able to reproduce historical observations well, which has a wide range of applications such as scenario generation, coupling with integrated assessment models, outreach, education, and policy making.
Abstract: &lt;p&gt;Hector is a carbon/climate model capable of emulating Earth System Model outputs at the global scale and is able to reproduce historical observations well. Like other participating models of the Reduced Complexity Model Intercomparison Project, Hector is a computationally efficient source of climate projections and thus has a wide range of applications such as scenario generation, coupling with integrated assessment models, outreach, education, and policy making. Hector version 3 includes a number of new features: carbon tracking, permafrost, improved land-ocean warming contrast, and a web browser-accessible interface. Here we summarize these developments and discuss how they improve the model&amp;#8217;s performance and broaden its potential user base.&amp;#160;&lt;/p&gt;
Journal ArticleDOI
TL;DR: This paper contrasts the near-term mitigation consequences of using an expected value, stochastic programming, and Stochastic control model to capture the policy effects of uncertain climate thresholds.
Abstract: How does risk and uncertainty in climate thresholds impact optimal short-run mitigation? This paper contrasts the near-term mitigation consequences of using an expected value, stochastic programming (SP), and stochastic control model to capture the policy effects of uncertain climate thresholds. The risk of threshold outcomes increases the expected damage. The passive learning associated with SP creates an extra incentive to mitigate and promptly to reduce the damage from the remaining threshold hazards. The active learning associated with a stochastic control model creates yet another incentive to do near-term mitigation in order to postpone reaching harmful thresholds.

Authors

Showing all 213 results

NameH-indexPapersCitations
Katherine Calvin5818114764
Steven J. Smith5819036110
George C. Hurtt5715924734
Brian C. O'Neill5717414636
Leon Clarke5318110770
James A. Edmonds5117510494
Claudia Tebaldi5010021389
Roberto C. Izaurralde481429790
Ghassem R. Asrar4614112280
Yuyu Zhou461696578
Ben Bond-Lamberty431447732
Marshall Wise401107074
William K. M. Lau401547095
Allison M. Thomson399122037
Ben Kravitz371274256
Network Information
Related Institutions (5)
Potsdam Institute for Climate Impact Research
5K papers, 367K citations

91% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

85% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

83% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

82% related

Natural Resources Canada
13K papers, 301.9K citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202218
2021106
2020112
201973
201878