scispace - formally typeset
Search or ask a question
Institution

Joint Global Change Research Institute

FacilityRiverdale Park, Maryland, United States
About: Joint Global Change Research Institute is a facility organization based out in Riverdale Park, Maryland, United States. It is known for research contribution in the topics: Greenhouse gas & Climate change. The organization has 197 authors who have published 934 publications receiving 62390 citations.


Papers
More filters
Journal ArticleDOI
01 Aug 2018-Nature
TL;DR: Observational evidence that global RH is rising is provided, probably in response to environmental changes, consistent with meta-analyses13–16 and long-term experiments, suggesting that climate-driven losses of soil carbon are occurring worldwide.
Abstract: Global soils store at least twice as much carbon as Earth’s atmosphere1,2. The global soil-to-atmosphere (or total soil respiration, RS) carbon dioxide (CO2) flux is increasing3,4, but the degree to which climate change will stimulate carbon losses from soils as a result of heterotrophic respiration (RH) remains highly uncertain5–8. Here we use an updated global soil respiration database9 to show that the observed soil surface RH:RS ratio increased significantly, from 0.54 to 0.63, between 1990 and 2014 (P = 0.009). Three additional lines of evidence provide support for this finding. By analysing two separate global gross primary production datasets10,11, we find that the ratios of both RH and RS to gross primary production have increased over time. Similarly, significant increases in RH are observed against the longest available solar-induced chlorophyll fluorescence global dataset, as well as gross primary production computed by an ensemble of global land models. We also show that the ratio of night-time net ecosystem exchange to gross primary production is rising across the FLUXNET201512 dataset. All trends are robust to sampling variability in ecosystem type, disturbance, methodology, CO2 fertilization effects and mean climate. Taken together, our findings provide observational evidence that global RH is rising, probably in response to environmental changes, consistent with meta-analyses13–16 and long-term experiments17. This suggests that climate-driven losses of soil carbon are currently occurring across many ecosystems, with a detectable and sustained trend emerging at the global scale.

325 citations

Journal ArticleDOI
TL;DR: A global-scale analysis of future urban densities and associated energy use in the built environment under different urbanization scenarios and examining building energy use for heating and cooling finds that dense urban development leads to less urban energy use overall.
Abstract: Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7–40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas.

325 citations

Journal ArticleDOI
TL;DR: The Land-Use Harmonization 2 (LUH2) project is presented, which smoothly connects updated historical reconstructions of land use with eight new future projections in the format required for ESMs to enable new and improved estimates of the combined effects of landUse on the global carbon–climate system.
Abstract: . Human land-use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth surface, with consequences for climate and other ecosystem services. In the future, land-use activities are likely to expand and/or intensify further to meet growing demands for food, fiber, and energy. As part of the World Climate Research Program Coupled Model Intercomparison Project (CMIP6), the international community is developing the next generation of advanced Earth System Models (ESMs) to estimate the combined effects of human activities (e.g. land use and fossil fuel emissions) on the carbon-climate system. A new set of historical data based on the History of the Global Environment database (HYDE), and multiple alternative scenarios of the future (2015–2100) from Integrated Assessment Model (IAM) teams, are required as input for these models. Here we present results from the Land-use Harmonization 2 (LUH2) project, with the goal to smoothly connect updated historical reconstructions of land-use with new future projections in the format required for ESMs. The harmonization strategy estimates the fractional land-use patterns, underlying land-use transitions, key agricultural management information, and resulting secondary lands annually, while minimizing the differences between the end of the historical reconstruction and IAM initial conditions and preserving changes depicted by the IAMs in the future. The new approach builds off a similar effort from CMIP5, and is now provided at higher resolution (0.25 × 0.25 degree), over a longer time domain (850–2100, with extensions to 2300), with more detail (including multiple crop and pasture types and associated management practices), using more input datasets (including Landsat remote sensing data), updated algorithms (wood harvest and shifting cultivation), and is assessed via a new diagnostic package. The new LUH2 products contain > 50 times the information content of the datasets used in CMIP5, and are designed to enable new and improved estimates of the combined effects of land-use on the global carbon-climate system.

316 citations

Journal ArticleDOI
TL;DR: The concept of shared climate policy assumptions is presented as an important element of the new scenario framework that facilitates the coupling of multiple socioeconomic reference pathways with climate model products using the representative concentration pathways to improve assessment of climate impacts, adaptation and mitigation.
Abstract: The new scenario framework facilitates the coupling of multiple socioeconomic reference pathways with climate model products using the representative concentration pathways. This will allow for improved assessment of climate impacts, adaptation and mitigation. Assumptions about climate policy play a major role in linking socioeconomic futures with forcing and climate outcomes. The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key policy attributes such as the goals, instruments and obstacles of mitigation and adaptation measures, and introduce an important additional dimension to the scenario matrix architecture. They can be used to improve the comparability of scenarios in the scenario matrix. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.

314 citations


Authors

Showing all 213 results

NameH-indexPapersCitations
Katherine Calvin5818114764
Steven J. Smith5819036110
George C. Hurtt5715924734
Brian C. O'Neill5717414636
Leon Clarke5318110770
James A. Edmonds5117510494
Claudia Tebaldi5010021389
Roberto C. Izaurralde481429790
Ghassem R. Asrar4614112280
Yuyu Zhou461696578
Ben Bond-Lamberty431447732
Marshall Wise401107074
William K. M. Lau401547095
Allison M. Thomson399122037
Ben Kravitz371274256
Network Information
Related Institutions (5)
Potsdam Institute for Climate Impact Research
5K papers, 367K citations

91% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

85% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

83% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

82% related

Natural Resources Canada
13K papers, 301.9K citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202218
2021106
2020112
201973
201878