scispace - formally typeset
Search or ask a question
Institution

Konkuk University

EducationSeoul, South Korea
About: Konkuk University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Apoptosis. The organization has 13405 authors who have published 27027 publications receiving 506313 citations.
Topics: Population, Apoptosis, Cancer, Graphene, Cancer cell


Papers
More filters
Journal ArticleDOI
TL;DR: The Task Force on Thyroid Nodules of the KSThR has revised the recommendations for the ultrasound diagnosis and imaging-based management of thyroid nodules, based on a comprehensive analysis of the current literature and the consensus of experts.
Abstract: The rate of detection of thyroid nodules and carcinomas has increased with the widespread use of ultrasonography (US), which is the mainstay for the detection and risk stratification of thyroid nodules as well as for providing guidance for their biopsy and nonsurgical treatment. The Korean Society of Thyroid Radiology (KSThR) published their first recommendations for the US-based diagnosis and management of thyroid nodules in 2011. These recommendations have been used as the standard guidelines for the past several years in Korea. Lately, the application of US has been further emphasized for the personalized management of patients with thyroid nodules. The Task Force on Thyroid Nodules of the KSThR has revised the recommendations for the ultrasound diagnosis and imaging-based management of thyroid nodules. The review and recommendations in this report have been based on a comprehensive analysis of the current literature and the consensus of experts.

634 citations

Journal ArticleDOI
TL;DR: Modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.
Abstract: Nanoparticles (NPs) possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS). The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.

621 citations

Journal ArticleDOI
03 Apr 2019-Cells
TL;DR: The history, biogenesis, release, isolation, characterization, and biological functions of exosomes, as well as the factors influencing their biogenesis and their technical and biological challenges are discussed.
Abstract: Exosomes are extracellular vesicles that contain a specific composition of proteins, lipids, RNA, and DNA. They are derived from endocytic membranes and can transfer signals to recipient cells, thus mediating a novel mechanism of cell-to-cell communication. They are also thought to be involved in cellular waste disposal. Exosomes play significant roles in various biological functions, including the transfer of biomolecules such as RNA, proteins, enzymes, and lipids and the regulation of numerous physiological and pathological processes in various diseases. Because of these properties, they are considered to be promising biomarkers for the diagnosis and prognosis of various diseases and may contribute to the development of minimally invasive diagnostics and next generation therapies. The biocompatible nature of exosomes could enhance the stability and efficacy of imaging probes and therapeutics. Due to their potential use in clinical applications, exosomes have attracted much research attention on their roles in health and disease. To explore the use of exosomes in the biomedical arena, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are well-understood. Herein, we discuss the history, biogenesis, release, isolation, characterization, and biological functions of exosomes, as well as the factors influencing their biogenesis and their technical and biological challenges. We conclude this review with a discussion on the future perspectives of exosomes.

613 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of Cu nanoparticles on the growth of a plant seedling was studied, and bioaccumulation of nanoparticles was investigated in plant agar media to prevent precipitation of water-insoluble nanoparticles.
Abstract: Because of their insolubility in water, nanoparticles have a limitation concerning toxicity experiments. The present study demonstrated a plant agar test for homogeneous exposure of nanoparticles to plant species. The effect of Cu nanoparticles on the growth of a plant seedling was studied, and bioaccumulation of nanoparticles was investigated. All tests were conducted in plant agar media to prevent precipitation of water-insoluble nanoparticles in test units. The plant species were Phaseolus radiatus (mung bean) and Triticum aestivum (wheat). Growth inhibition of a seedling exposed to different concentrations of Cu nanoparticles was examined. Copper nanoparticles were toxic to both plants and also were bioavailable. The 2-d median effective concentrations for P. radiatus and T. aestivum exposed to Cu nanoparticles were 335 (95% confidence level, 251-447) and 570 (450-722) mg/L, respectively. Phaseolus radiatus was more sensitive than T. aestivum to Cu nanoparticles. A cupric ion released from Cu nanoparticles had negligible effects in the concentration ranges of the present study, and the apparent toxicity clearly resulted from Cu nanoparticles. Bioaccumulation increased with increasing concentration of Cu nanoparticles, and agglomeration of particles was observed in the cells using transmission-electron microscopy-energy-dispersive spectroscopy. The present study demonstrated that the plant agar test was a good protocol for testing the phytotoxicity of nanoparticles, which are hardly water soluble.

610 citations

Journal ArticleDOI
TL;DR: The following is a comprehensive and critical review on nutritional and non-nutritional bioactive compounds of berries including their absorption, metabolism, and biological activity in relation to their potential effect on human health.

609 citations


Authors

Showing all 13470 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
Hyun-Chul Kim1764076183227
Jovan Milosevic1521433106802
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Ali Khademhosseini14088776430
Suyong Choi135149597053
Tae Jeong Kim132142093959
Maurizio Fava126101270636
Mihee Jo12580668740
Dooyeon Gyun12283667653
Dong Ho Moon11991267053
Sanghyeon Song11955656460
Louis J. Ignarro10633546008
Hans R. Schöler9537441150
Network Information
Related Institutions (5)
Kyungpook National University
42.1K papers, 834.6K citations

97% related

Korea University
82.4K papers, 1.8M citations

97% related

Chonnam National University
36.1K papers, 744.2K citations

97% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Pusan National University
45K papers, 819.3K citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022114
20211,927
20201,932
20191,846
20181,752