Author
Richard A. Flavell
Other affiliations: National Institute for Medical Research, University of Michigan, Biogen Idec ...read more
Bio: Richard A. Flavell is an academic researcher from Yale University. The author has contributed to research in topic(s): Immune system & T cell. The author has an hindex of 231, co-authored 1328 publication(s) receiving 205119 citation(s). Previous affiliations of Richard A. Flavell include National Institute for Medical Research & University of Michigan.
Topics: Immune system, T cell, Cytotoxic T cell, Innate immune system, Antigen
Papers published on a yearly basis
Papers
More filters
TL;DR: It is shown that mammalian TLR3 recognizes dsRNA, and that activation of the receptor induces the activation of NF-κB and the production of type I interferons (IFNs).
Abstract: Toll-like receptors (TLRs) are a family of innate immune-recognition receptors that recognize molecular patterns associated with microbial pathogens, and induce antimicrobial immune responses. Double-stranded RNA (dsRNA) is a molecular pattern associated with viral infection, because it is produced by most viruses at some point during their replication. Here we show that mammalian TLR3 recognizes dsRNA, and that activation of the receptor induces the activation of NF-kappaB and the production of type I interferons (IFNs). TLR3-deficient (TLR3-/-) mice showed reduced responses to polyinosine-polycytidylic acid (poly(I:C)), resistance to the lethal effect of poly(I:C) when sensitized with d-galactosamine (d-GalN), and reduced production of inflammatory cytokines. MyD88 is an adaptor protein that is shared by all the known TLRs. When activated by poly(I:C), TLR3 induces cytokine production through a signalling pathway dependent on MyD88. Moreover, poly(I:C) can induce activation of NF-kappaB and mitogen-activated protein (MAP) kinases independently of MyD88, and cause dendritic cells to mature.
5,744 citations
TL;DR: In transgenic mice, elevated GATA-3 in CD4 T cells caused Th2 cytokine gene expression in developing Th1 cells, indicating that Gata-3 is necessary and sufficient for Th2inflammatory gene expression.
Abstract: CD4 T cells potentiate the inflammatory or humoral immune response through the action of Th1 and Th2 cells, respectively. The molecular basis of the differentiation of these cells from naive T cell precursors is, however, unclear. We found that GATA-3 was selectively expressed in Th2 cells. GATA-3 is expressed at a high level in naive, freshly activated T cells and Th2 lineage cells, but subsides to a minimal level in Th1 lineage cells as naive cells commit to their Th subset. Antisense GATA-3 inhibited the expression of all Th2 cytokine genes in the Th2 clone D10. GATA-3 directly activated an IL-4 promoter-luciferase reporter gene in M12 cells. In transgenic mice, elevated GATA-3 in CD4 T cells caused Th2 cytokine gene expression in developing Th1 cells. Thus, GATA-3 is necessary and sufficient for Th2 cytokine gene expression.
2,272 citations
Institut Gustave Roussy1, University of Paris-Sud2, French Institute of Health and Medical Research3, Icahn School of Medicine at Mount Sinai4, University of Texas Southwestern Medical Center5, Thomas Jefferson University6, McMaster University7, University of Massachusetts Medical School8, LSU Health Sciences Center New Orleans9, Roswell Park Cancer Institute10, Boston Children's Hospital11, University of Gothenburg12, University of Freiburg13, University of California, San Francisco14, Buck Institute for Research on Aging15, Centre national de la recherche scientifique16, National Institutes of Health17, Technion – Israel Institute of Technology18, University of Leicester19, University of Chieti-Pescara20, Istituto Superiore di Sanità21, University of North Carolina at Chapel Hill22, New York University23, University of Pennsylvania24, Howard Hughes Medical Institute25, Yale University26, University of Ulm27, University of Burgundy28, Aix-Marseille University29, Pasteur Institute30, University of Strasbourg31, Johns Hopkins University32, University of Zurich33, University of Tokyo34, Weizmann Institute of Science35, University of Michigan36, University College London37, Duke University38, University of Graz39, Ghent University40, Trinity College, Dublin41, University of Amsterdam42, University of Lyon43, University of Rome Tor Vergata44, University of Göttingen45, Stony Brook University46, Kyoto University47, Merck & Co.48, Austrian Academy of Sciences49, National University of Singapore50, University of Chicago51, Royal College of Surgeons in Ireland52, La Trobe University53, University of Buenos Aires54, University of Padua55, University of Lisbon56, University of Cambridge57, University of Würzburg58, University of Geneva59, University of Bern60, Rockefeller University61, University of Lausanne62, Osaka University63, University of California, San Diego64, University of Glasgow65, Harvard University66, Karolinska Institutet67
TL;DR: A nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls is provided and the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells is emphasized.
Abstract: Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios Thus far, dozens of methods have been proposed to quantify cell death-related parameters However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells
2,133 citations
TL;DR: It is shown that signalling through CD40 on the antigen-presenting cells can replace the requirement for TH cells, indicating that T-cell ‘help’, at least for generation of CTLs by cross-priming, is mediated by signalling throughCD40 onThe antigen- presenting cell.
Abstract: Cytotoxic T lymphocytes (CTLs) which carry the CD8 antigen recognize antigens that are presented on target cells by the class I major histocompatibility complex. CTLs are responsible for the killing of antigen-bearing target cells, such as virus-infected cells. Although CTL effectors can act alone when killing target cells, their differentiation from naive CD8-positive T cells is often dependent on ‘help’ from CD4-positive helper T (TH) cells1,2,3,4. Furthermore, for effective CTL priming, this help must be provided in a cognate manner, such that both the TH cell and the CTL recognize antigen on the same antigen-presenting cell2,4. One explanation for this requirement is that TH cells are needed to convert the antigen-presenting cell into a cell that is fully competent to prime CTL5. Here we show that signalling through CD40 on the antigen-presenting cells can replace the requirement for TH cells, indicating that T-cell ‘help’, at least for generation of CTLs by cross-priming, is mediated by signalling through CD40 on the antigen-presenting cell.
2,119 citations
TL;DR: It is demonstrated here that carbon monoxide, a by-product of heme catabolism by heme oxygenase, mediates potent anti-inflammatory effects and may have an important protective function in inflammatory disease states and thus has potential therapeutic uses.
Abstract: The stress-inducible protein heme oxygenase-1 provides protection against oxidative stress. The anti-inflammatory properties of heme oxygenase-1 may serve as a basis for this cytoprotection. We demonstrate here that carbon monoxide, a by-product of heme catabolism by heme oxygenase, mediates potent anti-inflammatory effects. Both in vivo and in vitro, carbon monoxide at low concentrations differentially and selectively inhibited the expression of lipopolysaccharide-induced pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-1β and increased the lipopolysaccharide-induced expression of the anti-inflammatory cytokine interleukin-10. Carbon monoxide mediated these anti-inflammatory effects not through a guanylyl cyclase–cGMP or nitric oxide pathway, but instead through a pathway involving the mitogen-activated protein kinases. These data indicate the possibility that carbon monoxide may have an important protective function in inflammatory disease states and thus has potential therapeutic uses.
1,921 citations
Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。
18,940 citations
TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Abstract: We have developed a procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters. Conditions of extraction and assay have been optimized for maximum activity using the major late promoter of adenovirus 2. The extract also directs accurate transcription initiation from other adenovirus promoters and cellular promoters. The extract also directs accurate transcription initiation from class III promoters (tRNA and Ad 2 VA).
10,734 citations
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.
10,124 citations
9,861 citations
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.
Abstract: Microorganisms that invade a vertebrate host are initially recognized by the innate immune system through germline-encoded pattern-recognition receptors (PRRs). Several classes of PRRs, including Toll-like receptors and cytoplasmic receptors, recognize distinct microbial components and directly activate immune cells. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. New insights into innate immunity are changing the way we think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.
9,733 citations