scispace - formally typeset
Search or ask a question
Institution

Konkuk University

EducationSeoul, South Korea
About: Konkuk University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Apoptosis. The organization has 13405 authors who have published 27027 publications receiving 506313 citations.
Topics: Population, Apoptosis, Cancer, Graphene, Cancer cell


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a methanol extract of Ligularia fischeri was studied for its inhibitive effect on the corrosion of mild steel in a 1-M hydrochloric acid medium, using the metrics of weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS).
Abstract: A methanol extract of Ligularia fischeri was studied for its inhibitive effect on the corrosion of mild steel in a 1 M hydrochloric acid medium, using the metrics of weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). The corrosion rate of mild steel and Ligularia fischeri's inhibition efficiencies were calculated. The inhibition efficiency [ η (%)] was observed to increase with increasing concentrations of Ligularia fischeri . A maximum inhibition efficiency of 92% was achieved using 500 ppm of the inhibitor. The weight loss experiments were performed at different temperatures to understand the thermodynamic mechanism of inhibition. A mixed inhibition mechanism was proposed for the effects of Ligularia fischeri extract, as revealed by the potentiodynamic polarization technique. A solution analysis by atomic absorption spectroscopy (AAS) for mild steel showed decreased dissolution of iron in the presence of Ligularia fischeri . The adsorption mechanism and surface morphology of the mild steel, both with and without the inhibitor, were studied using UV–visible, Fourier transform infrared (FT-IR), Raman, wide-angle X-ray diffraction (WAXD), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDS), and atomic force microscopy (AFM).

111 citations

Journal ArticleDOI
TL;DR: It is found that many tools worked well at shorter evolutionary distances, but fewer performed competitively at longer distances, indicating that there are substantial accuracy differences between contemporary alignment tools.
Abstract: Multiple sequence alignments (MSAs) are a prerequisite for a wide variety of evolutionary analyses. Published assessments and benchmark data sets for protein and, to a lesser extent, global nucleotide MSAs are available, but less effort has been made to establish benchmarks in the more general problem of whole-genome alignment (WGA). Using the same model as the successful Assemblathon competitions, we organized a competitive evaluation in which teams submitted their alignments and then assessments were performed collectively after all the submissions were received. Three data sets were used: Two were simulated and based on primate and mammalian phylogenies, and one was comprised of 20 real fly genomes. In total, 35 submissions were assessed, submitted by 10 teams using 12 different alignment pipelines. We found agreement between independent simulation-based and statistical assessments, indicating that there are substantial accuracy differences between contemporary alignment tools. We saw considerable differences in the alignment quality of differently annotated regions and found that few tools aligned the duplications analyzed. We found that many tools worked well at shorter evolutionary distances, but fewer performed competitively at longer distances. We provide all data sets, submissions, and assessment programs for further study and provide, as a resource for future benchmarking, a convenient repository of code and data for reproducing the simulation assessments.

111 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the contribution of transported organic aerosol (OA) to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations.
Abstract: . Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASA–NIER KORUS-AQ (Korea–United States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was ∼1 –3 µg sm−3 . Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was ∼140 µ g sm - 3 ppmv - 1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20–70 µ g sm - 3 ppmv - 1 at 0.5 equivalent days). For the average OA concentration observed over Seoul (13 µg sm−3 ), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11 % on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9 % of the modeled SOA over Seoul. Finally, along with these results, we use the metric ΔOA / ΔCO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than ΔOA∕ΔCO .

111 citations

Journal ArticleDOI
TL;DR: Evidence is provided of the inhibitory effects of AgNPs on the activities of soil exoenzymes, with the urease activity especially sensitive toAgNPs.

111 citations

Journal ArticleDOI
08 Apr 2014-PLOS ONE
TL;DR: The newly uncovered wood degrading capacity and sequential nature of this process in F. velutipes, offer interesting possibilities for more detailed studies on either lignin or (hemi-) cellulose degradation in complex wood substrates.
Abstract: Flammulina velutipes is a fungus with health and medicinal benefits that has been used for consumption and cultivation in East Asia. F. velutipes is also known to degrade lignocellulose and produce ethanol. The overlapping interests of mushroom production and wood bioconversion make F. velutipes an attractive new model for fungal wood related studies. Here, we present the complete sequence of the F. velutipes genome. This is the first sequenced genome for a commercially produced edible mushroom that also degrades wood. The 35.6-Mb genome contained 12,218 predicted protein-encoding genes and 287 tRNA genes assembled into 11 scaffolds corresponding with the 11 chromosomes of strain KACC42780. The 88.4-kb mitochondrial genome contained 35 genes. Well-developed wood degrading machinery with strong potential for lignin degradation (69 auxiliary activities, formerly FOLymes) and carbohydrate degradation (392 CAZymes), along with 58 alcohol dehydrogenase genes were highly expressed in the mycelium, demonstrating the potential application of this organism to bioethanol production. Thus, the newly uncovered wood degrading capacity and sequential nature of this process in F. velutipes, offer interesting possibilities for more detailed studies on either lignin or (hemi-) cellulose degradation in complex wood substrates. The mutual interest in wood degradation by the mushroom industry and (ligno-)cellulose biomass related industries further increase the significance of F. velutipes as a new model.

111 citations


Authors

Showing all 13470 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
Hyun-Chul Kim1764076183227
Jovan Milosevic1521433106802
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Ali Khademhosseini14088776430
Suyong Choi135149597053
Tae Jeong Kim132142093959
Maurizio Fava126101270636
Mihee Jo12580668740
Dooyeon Gyun12283667653
Dong Ho Moon11991267053
Sanghyeon Song11955656460
Louis J. Ignarro10633546008
Hans R. Schöler9537441150
Network Information
Related Institutions (5)
Kyungpook National University
42.1K papers, 834.6K citations

97% related

Korea University
82.4K papers, 1.8M citations

97% related

Chonnam National University
36.1K papers, 744.2K citations

97% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Pusan National University
45K papers, 819.3K citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022114
20211,927
20201,932
20191,846
20181,752