scispace - formally typeset
Search or ask a question

Showing papers by "Korea Institute of Science and Technology Information published in 2021"


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1428 moreInstitutions (155)
TL;DR: In this article, the population of 47 compact binary mergers detected with a false-alarm rate of 0.614 were dynamically assembled, and the authors found that the BBH rate likely increases with redshift, but not faster than the star formation rate.
Abstract: We report on the population of 47 compact binary mergers detected with a false-alarm rate of 0.01 are dynamically assembled. Third, we estimate merger rates, finding RBBH = 23.9-+8.614.3 Gpc-3 yr-1 for BBHs and RBNS = 320-+240490 Gpc-3 yr-1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility) but not faster than the star formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

468 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1692 moreInstitutions (195)
TL;DR: In this article, the authors reported the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries.
Abstract: We report the observation of gravitational waves from two compact binary coalescences in LIGO’s and Virgo’s third observing run with properties consistent with neutron star–black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses 8.9−1.5+1.2 and 1.9−0.2+0.3M⊙ , whereas the source of GW200115 has component masses 5.7−2.1+1.8 and 1.5−0.3+0.7M⊙ (all measurements quoted at the 90% credible level). The probability that the secondary’s mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280−110+110 and 300−100+150Mpc , respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45−33+75Gpc−3yr−1 when assuming that GW200105 and GW200115 are representative of the NSBH population or 130−69+112Gpc−3yr−1 under the assumption of a broader distribution of component masses.

374 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1335 moreInstitutions (144)
TL;DR: The data recorded by these instruments during their first and second observing runs are described, including the gravitational-wave strain arrays, released as time series sampled at 16384 Hz.

320 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1273 moreInstitutions (140)
TL;DR: In this article, the first and second observing runs of the Advanced LIGO and Virgo detector network were used to obtain the first standard-siren measurement of the Hubble constant (H 0).
Abstract: This paper presents the gravitational-wave measurement of the Hubble constant (H 0) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of H 0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is H 0 = km s−1 Mpc−1 (68.3% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only value of km s−1 Mpc−1. A significant additional contribution currently comes from GW170814, a loud and well-localized detection from a part of the sky thoroughly covered by the Dark Energy Survey. With numerous detections anticipated over the upcoming years, an exhaustive understanding of other systematic effects are also going to become increasingly important. These results establish the path to cosmology using gravitational-wave observations with and without transient electromagnetic counterparts.

171 citations


Journal ArticleDOI
S. Wehle, Iki Adachi1, Iki Adachi2, K. Adamczyk  +206 moreInstitutions (73)
TL;DR: In this article, the authors acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University.
Abstract: We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including Grants No. DP180102629, No. DP170102389, No. DP170102204, No. DP150103061, No. FT130100303; Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSWSLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2016R1D1A1B01010135, No. 2016R1D1A1B02012900, No. 2018R1A2B3003643, No. 2018R1A6A1A06024970, No. 2018R1D1A1B07047294, No. 2019K1A3A7A09033840, No. 2019R1I1A3A01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information, and KREONET/GLORIAD the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 14.W03.31.0026; University of Tabuk research Grants No. S-1440-0321, No. S-0256-1438, and No. S-0280-1439 (Saudi Arabia); the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U.S. Department of Energy and the National Science Foundation.

147 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1678 moreInstitutions (193)
TL;DR: In this article, the authors report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs.
Abstract: We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO’s and Advanced Virgo’s third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results of the search are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density Ω GW ≤ 5.8 × 10 − 9 at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20–76.6 Hz; Ω GW ( f ) ≤ 3.4 × 10 − 9 at 25 Hz for a power-law GWB with a spectral index of 2 / 3 (consistent with expectations for compact binary coalescences), in the band 20–90.6 Hz; and Ω GW ( f ) ≤ 3.9 × 10 − 10 at 25 Hz for a spectral index of 3, in the band 20–291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB, 8.8 for a spectral index of 2 / 3 , and 13.1 for a spectral index of 3. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we do not find evidence of these, and place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries, updating the model to use the most recent data-driven population inference from the systems detected during O3a. Finally, we combine our results with observations of individual mergers and show that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at z ≳ 2 than can be achieved with individually resolved mergers alone.

146 citations


Journal ArticleDOI
Tomotada Akutsu1, Masaki Ando2, Masaki Ando1, Koji Arai2  +201 moreInstitutions (45)
TL;DR: KAGRA as discussed by the authors is a newly built gravitational-wave telescope, a laser interferometer comprising arms with a length of 3 km, located in Kamioka, Gifu, Japan.
Abstract: KAGRA is a newly built gravitational-wave telescope, a laser interferometer comprising arms with a length of 3\,km, located in Kamioka, Gifu, Japan. KAGRA was constructed under the ground and it is operated using cryogenic mirrors that help in reducing the seismic and thermal noise. Both technologies are expected to provide directions for the future of gravitational-wave telescopes. In 2019, KAGRA finished all installations with the designed configuration, which we call the baseline KAGRA. In this occasion, we present an overview of the baseline KAGRA from various viewpoints in a series of of articles. In this article, we introduce the design configurations of KAGRA with its historical background.

138 citations


Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +979 moreInstitutions (156)
TL;DR: Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
Abstract: The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.

102 citations


Journal ArticleDOI
Tomotada Akutsu1, Masaki Ando1, Masaki Ando2, Koya Arai2  +241 moreInstitutions (51)
TL;DR: In this article, the authors present an overview of the baseline KAGRA, a laser interferometer with a 3 km arm length, located at Kamioka, Gifu, Japan.
Abstract: KAGRA is a newly built gravitational wave observatory, a laser interferometer with a 3 km arm length, located at Kamioka, Gifu, Japan. In this series of articles we present an overview of the baseline KAGRA, for which we finished installing the designed configuration in 2019. This article describes the method of calibration (CAL) used for reconstructing gravitational wave signals from the detector outputs, as well as the characterization of the detector (DET). We also review the physical environmental monitoring (PEM) system and the geophysics interferometer (GIF). Both are used for characterizing and evaluating the data quality of the gravitational wave channel. They play important roles in utilizing the detector output for gravitational wave searches. These characterization investigations will be even more important in the near future, once gravitational wave detection has been achieved, and in using KAGRA in the gravitational wave astronomy era.

80 citations


Journal ArticleDOI
Somnath Choudhury1, S. Sandilya2, S. Sandilya1, K. Trabelsi3  +261 moreInstitutions (83)
TL;DR: In this paper, the authors measured the branching fractions for the decays B → Kμ+μ− and B → Ke+e−, and their ratio (RK), using a data sample of 711 fb−1 that contains 772 × 106 $$ B\overline{B} $$ events.
Abstract: We present measurements of the branching fractions for the decays B → Kμ+μ− and B → Ke+e−, and their ratio (RK), using a data sample of 711 fb−1 that contains 772 × 106 $$ B\overline{B} $$ events. The data were collected at the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e− collider. The ratio RK is measured in five bins of dilepton invariant-mass-squared (q2): q2 ∈ (0.1, 4.0), (4.00, 8.12), (1.0, 6.0), (10.2, 12.8) and (> 14.18) GeV2/c4, along with the whole q2 region. The RK value for q2 ∈ (1.0, 6.0) GeV2/c4 is $$ {1.03}_{-0.24}^{+0.28} $$ ± 0.01. The first and second uncertainties listed are statistical and systematic, respectively. All results for RK are consistent with Standard Model predictions. We also measure CP-averaged isospin asymmetries in the same q2 bins. The results are consistent with a null asymmetry, with the largest difference of 2.6 standard deviations occurring for the q2 ∈ (1.0, 6.0) GeV2/c4 bin in the mode with muon final states. The measured differential branching fractions, $$ d\mathrm{\mathcal{B}} $$ /dq2, are consistent with theoretical predictions for charged B decays, while the corresponding values are below the expectations for neutral B decays. We have also searched for lepton-flavor-violating B → Kμ±e∓ decays and set 90% confidence-level upper limits on the branching fraction in the range of 10−8 for B+ → K+μ±e∓, and B0 → K0μ±e∓ modes.

69 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1665 moreInstitutions (193)
TL;DR: In this article, the authors search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset and obtain results for the first time that kink-kink collisions do not yield a detection.
Abstract: We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions A template-based search for short-duration transient signals does not yield a detection We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension Gμ as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models Additionally, we develop and test a third model that interpolates between these two models Our results improve upon the previous LIGO-Virgo constraints on Gμ by 1 to 2 orders of magnitude depending on the model that is tested In particular, for the one-loop distribution model, we set the most competitive constraints to date: Gμ≲4×10^{-15} In the case of cosmic strings formed at the end of inflation in the context of grand unified theories, these results challenge simple inflationary models

Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +975 moreInstitutions (155)
TL;DR: The Deep Underground Neutrino Experiment (DUNE) as discussed by the authors is a 40kton underground liquid argon time projection chamber experiment, which is sensitive to the electron-neutrinos flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova.
Abstract: The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the $ u_e$ spectral parameters of the neutrino burst will be considered.

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1454 moreInstitutions (157)
TL;DR: In this article, a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline is presented.
Abstract: Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most sensitive frequency band of the LIGO detectors, 50–300 Hz. Binary orbital parameters are split into four regions, comprising orbital periods of three to 45 days and projected semimajor axes of two to 40 light seconds. No detections are reported. We estimate the sensitivity of the search using simulated continuous wave signals, achieving the most sensitive results to date across the analyzed parameter space.

Journal ArticleDOI
25 Aug 2021-Nature
TL;DR: In this article, the authors explored whole-genomes of 334 single-cell colonies and targeted deep sequences of 379 bulk tissues obtained from various anatomical locations of seven recently deceased adult human donors.
Abstract: Cellular dynamics and fate decision in early human embryogenesis remain largely unknown owing to the challenges of performing studies in human embryos1. Here, we explored whole-genomes of 334 single-cell colonies and targeted deep sequences of 379 bulk tissues obtained from various anatomical locations of seven recently deceased adult human donors. Using somatic mutations as an intrinsic barcode, we reconstructed early cellular phylogenies that demonstrate (1) an endogenous mutational rate that is higher in the first cell division but decreases to approximately one per cell per cell division later in life; (2) universal unequal contribution of early cells to embryo proper, resulting from early cellular bottlenecks that stochastically set aside epiblast cells within the embryo; (3) examples of varying degrees of early clonal imbalances between tissues on the left and right sides of the body, different germ layers and specific anatomical parts and organs; (4) emergence of a few ancestral cells that will substantially contribute to adult cell pools in blood and liver; and (5) presence of mitochondrial DNA heteroplasmy in the fertilized egg. Our approach also provides insights into the age-related mutational processes and loss of sex chromosomes in normal somatic cells. In sum, this study provides a foundation for future studies to complete cellular phylogenies in human embryogenesis. Adult human tissues from diverse sites around the body are used to reconstruct cellular phylogenies from early development, using somatic mutations as an internal barcode.

Journal ArticleDOI
TL;DR: It was established that the developed methodology allows for the production of NPs with different morphologies and compositions in a safe and simple manner and a detailed reduction pathway mechanism for the catalytic reduction of 4-nitrophenol and nitrobenzene has been proposed.

Journal ArticleDOI
TL;DR: A new taxonomy of ST-GNN is proposed by dividing existing models into four approaches such as graph convolutional recurrent neural network, fully graph Convolutional network, graph multi-attention network, and self-learning graph structure.
Abstract: Traffic forecasting plays an important role of modern Intelligent Transportation Systems (ITS). With the recent rapid advancement in deep learning, graph neural networks (GNNs) have become an emerging research issue for improving the traffic forecasting problem. Specifically, one of the main types of GNNs is the spatial-temporal GNN (ST-GNN), which has been applied to various time-series forecasting applications. This study aims to provide an overview of recent ST-GNN models for traffic forecasting. Particularly, we propose a new taxonomy of ST-GNN by dividing existing models into four approaches such as graph convolutional recurrent neural network, fully graph convolutional network, graph multi-attention network, and self-learning graph structure. Sequentially, we present experimental results based on the reconstruction of representative models using selected benchmark datasets to evaluate the main contributions of the key components in each type of ST-GNN. Finally, we discuss several open research issues for further investigations.

Journal ArticleDOI
R. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1684 moreInstitutions (193)
TL;DR: In this article, the authors reported results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors.
Abstract: We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called pystoch on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from F α , Θ < ( 0.013 – 7.6 ) × 10 − 8 erg cm − 2 s − 1 Hz − 1 , and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Ω α , Θ < ( 0.57 – 9.3 ) × 10 − 9 sr − 1 , depending on direction ( Θ ) and spectral index ( α ). These limits improve upon previous limits by factors of 2.9–3.5. We also set 95% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h 0 < ( 1.7 – 2.1 ) × 10 − 25 , a factor of ≥ 2.0 improvement compared to previous stochastic radiometer searches.

Journal ArticleDOI
TL;DR: An automated framework for hyperparameter tuning to learn traffic datasets at an ecosystem in terms of reducing time-consuming tasks is introduced and evaluation indicates promising results of the proposed framework for learning multiple datasets of the traffic highway systems.
Abstract: Auto machine learning recently has been introduced as a trending technique for learning applications, including smart transportation. In this study, we focus on applying auto-machine learning for hyperparameter tuning to learn traffic datasets at the main regions of highway systems. Particularly, deep learning models have been recently introduced as emergent methods for traffic prediction. However, training deep learning models requires expensive works (e.g., time-consuming and human expertise), especially in terms of determining the configurations of hyperparameters in the models. In this regard, this paper introduces an automated framework for hyperparameter tuning to learn traffic datasets at an ecosystem in terms of reducing time-consuming tasks. Specifically, we first propose the HyperNet framework, using advanced data science techniques (e.g., Bayesian optimization and meta-learning) for the automated hyperparameter search process. Then, a deep learning model with the long short term memory network based on the HyperNet framework has presented for learning the temporal variation of traffic datasets at main regions of highway traffic systems. Regarding the experiment, we take data from the Korean highway system into account as a case study to evaluate the proposed approach. The evaluation indicates promising results of the proposed framework for learning multiple datasets of the traffic highway systems.

Journal ArticleDOI
Shreyasi Acharya1, Dagmar Adamová2, Alexander Adler3, Jonatan Adolfsson4  +1005 moreInstitutions (111)
TL;DR: The pT-differential production cross sections of prompt and non-prompt (produced in beauty-hadron decays) D mesons were measured by the ALICE experiment at midrapidity (|y| < 0.5) in proton-proton collisions at = 5.02 TeV.
Abstract: The pT-differential production cross sections of prompt and non-prompt (produced in beauty-hadron decays) D mesons were measured by the ALICE experiment at midrapidity (|y| < 0.5) in proton-proton collisions at $$ \sqrt{s} $$ = 5.02 TeV. The data sample used in the analysis corresponds to an integrated luminosity of (19.3 ± 0.4) nb−1. D mesons were reconstructed from their decays D0 → K−π+, D+ → K−π+π+, and $$ {\mathrm{D}}_{\mathrm{s}}^{+}\to \upphi {\uppi}^{+}\to {\mathrm{K}}^{-}{\mathrm{K}}^{+}{\uppi}^{+} $$ and their charge conjugates. Compared to previous measurements in the same rapidity region, the cross sections of prompt D+ and $$ {\mathrm{D}}_{\mathrm{s}}^{+} $$ mesons have an extended pT coverage and total uncertainties reduced by a factor ranging from 1.05 to 1.6, depending on pT, allowing for a more precise determination of their pT-integrated cross sections. The results are well described by perturbative QCD calculations. The fragmentation fraction of heavy quarks to strange mesons divided by the one to non-strange mesons, fs/(fu + fd), is compatible for charm and beauty quarks and with previous measurements at different centre-of-mass energies and collision systems. The $$ \mathrm{b}\overline{\mathrm{b}} $$ production cross section per rapidity unit at midrapidity, estimated from non-prompt D-meson measurements, is $$ \mathrm{d}{\sigma}_{\mathrm{b}\overline{\mathrm{b}}}/\mathrm{d}y\left|{}_{\left|\mathrm{y}\right|<0.5}=34.5\pm 2.4{\left(\mathrm{stat}\right)}_{-2.9}^{+4.7}\left(\mathrm{tot}.\mathrm{syst}\right)\right. $$ μb. It is compatible with previous measurements at the same centre-of-mass energy and with the cross section pre- dicted by perturbative QCD calculations.

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1682 moreInstitutions (197)
TL;DR: In this paper, a search for quasi-monochromatic gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537−6910 using data from the second and third observing runs of LIGO and Virgo was presented.
Abstract: We present a search for quasi-monochromatic gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537−6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using Neutron star Interior Composition Explorer (NICER) data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537−6910 has the largest spin-down luminosity of any pulsar and exhibits fRequent and strong glitches. Analyses of its long-term and interglitch braking indices provide intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of the LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency from PSR J0537−6910. We find no signal, however, and report upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of 2 and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is constrained to less than about 3 ×10−5, which is the third best constraint for any young pulsar.

Journal ArticleDOI
K. Uno1, K. Hayasaka1, K. Inami2, Iki Adachi3  +219 moreInstitutions (74)
TL;DR: In this article, an updated search via τ± → l±γ using full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb−1, is reported for charged lepton flavor violation.
Abstract: Charged lepton flavor violation is forbidden in the Standard Model but possible in several new physics scenarios. In many of these models, the radiative decays τ± → l±γ (l = e, μ) are predicted to have a sizeable probability, making them particularly interesting channels to search at various experiments. An updated search via τ± → l±γ using full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb−1, is reported for charged lepton flavor violation. No significant excess over background predictions from the Standard Model is observed, and the upper limits on the branching fractions, $$ \mathcal{B} $$ (τ± → μ±γ) ≤ 4.2 × 10−8 and $$ \mathcal{B} $$ (τ± → e±γ) ≤ 5.6 × 10−8, are set at 90% confidence level.

Journal ArticleDOI
Shreyasi Acharya1, Dagmar Adamová2, Alexander Adler3, Jonatan Adolfsson4  +1000 moreInstitutions (101)
TL;DR: In this article, it was shown that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies.
Abstract: The prompt production of the charm baryon Λ c + and the Λ c + / D 0 production ratios were measured at midrapidity with the ALICE detector in p p and p -Pb collisions at s NN = 5.02 TeV . These new measurements show a clear decrease of the Λ c + / D 0 ratio with increasing transverse momentum ( p T ) in both collision systems in the range 2 p T 12 GeV / c , exhibiting similarities with the light-flavor baryon-to-meson ratios p / π and Λ / K S 0 . At low p T , predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e + e - and e - p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies.

Journal ArticleDOI
Shreyasi Acharya1, Dagmar Adamová2, Alexander Adler3, Jonatan Adolfsson4  +1028 moreInstitutions (104)
TL;DR: In this paper, Alikhanyan et al. presented the results of a study conducted by the Austrian Academy of Sciences, Austrian Science Fund (FWF) and Nationalstiftung fur Forschung, Technologie und Entwicklung, Austria.

Journal ArticleDOI
Shreyasi Acharya1, Dagmar Adamová2, Alexander Adler3, Jonatan Adolfsson4  +1012 moreInstitutions (107)
TL;DR: In this paper, the results of inelastic proton-proton (pp) collisions at a center-of-mass energy of 13 TeV at the ALICE detector at the CERN LHC were reported.
Abstract: The production of $\pi ^{\pm }$, $\mathrm{K}^{\pm }$, $\mathrm{K}^{0}_{S}$, $\mathrm{K}^{*}(892)^{0}$, $\mathrm{p}$, $\phi (1020)$, $\Lambda $, $\Xi ^{-}$, $\Omega ^{-}$, and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.5$) as a function of transverse momentum ($p_{\mathrm{T}}$) using the ALICE detector at the CERN LHC. Furthermore, the single-particle $p_{\mathrm{T}}$ distributions of $\mathrm{K}^{0}_{S}$, $\Lambda $, and $\overline{\Lambda }$ in inelastic pp collisions at $\sqrt{s} = 7$ TeV are reported here for the first time. The $p_{\mathrm{T}}$ distributions are studied at midrapidity within the transverse momentum range $0\le p_{\mathrm{T}}\le 20$ GeV/c, depending on the particle species. The $p_{\mathrm{T}}$ spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower $\sqrt{s}$ and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high $p_{\mathrm{T}}$ with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and $x_{\mathrm{T}}\equiv 2p_{\mathrm{T}}/\sqrt{s}$ scaling properties of hadron production are also studied. As the collision energy increases from $\sqrt{s}$ = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of $\sqrt{s}$, while ratios for multi-strange hadrons indicate enhancements. The $p_\mathrm{{T}}$-differential cross sections of $\pi ^{\pm }$, $\mathrm {K}^{\pm }$ and $\mathrm {p}$ ($\overline{\mathrm{p}}$) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for $\pi ^{\pm }$ and $\mathrm{p}$ ($\overline{\mathrm{p}}$) at high $p_\mathrm{{T}}$.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed public risk awareness and behavior in response to the outbreak of epidemic diseases, focusing on RSV (Relative Search Volume) provided by Google Trends and found that the pandemic declaration increased public awareness and had the effect of increasing searches for information on COVID-19 by more than 20%.

Journal ArticleDOI
TL;DR: Analysis of data from scientific articles and patents to identify the evolving trends and underlying topics in research on humanoid robots using topic modelling based on latent Dirichlet allocation analysis and social network analysis to detect important and influential sub-areas.
Abstract: This article presents analysis of data from scientific articles and patents to identify the evolving trends and underlying topics in research on humanoid robots. We used topic modelling based on la...

Journal ArticleDOI
Tomotada Akutsu1, Masaki Ando1, Masaki Ando2, Koji Arai2  +247 moreInstitutions (52)
TL;DR: In this article, the authors discuss the science targets of KAGRA projects, considering not only the baseline (current design) but also its future upgrade candidates (KAGRA+) for the near to middle term (~5 years).
Abstract: KAGRA is a newly build gravitational-wave observatory, a laser interferometer with 3 km arm length, located in Kamioka, Gifu, Japan. In this paper in the series of KAGRA-featured articles, we discuss the science targets of KAGRA projects, considering not only the baseline KAGRA (current design) but also its future upgrade candidates (KAGRA+) for the near to middle term (~5 years).

Journal ArticleDOI
Y. Teramoto1, Sadaharu Uehara2, Sadaharu Uehara3, M. Masuda4  +238 moreInstitutions (81)
TL;DR: The first evidence for X(3872) production in two-photon interactions is reported by tagging either the electron or the positron in the final state, exploring the highly virtual photon region.
Abstract: We report the first evidence for $X(3872)$ production in two-photon interactions by tagging either the electron or the position in the final state, exploring the highly virtual photon region. The search is performed in $e^+e^- \rightarrow e^+e^-J/\psi\pi^+\pi^-$, using 825 fb$^{-1}$ of data collected by the Belle detector operated at the KEKB $e^+e^-$ collider. We observe three $X(3872)$ candidates with an expected background of $0.11\pm 0.10$ events, with a significance of 3.2$\sigma$. We obtain an estimated value for $\tilde{\Gamma}_{\gamma\gamma}{\cal B}(X(3872)\rightarrow J/\psi\pi^+\pi^-$) assuming the $Q^2$ dependence predicted by a $c\bar{c}$ meson model, where $-Q^2$ is the invariant mass-squared of the virtual photon. No $X(3915)\rightarrow J/\psi\pi^+\pi^-$ candidates are found.

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1326 moreInstitutions (149)
TL;DR: In this article, the authors search for gravitational-wave transients associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC-2019 October 1 15,00 UTC).
Abstract: We search for gravitational-wave transients associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). A total of 105 GRBs were analyzed using a search for generic gravitational-wave transients; 32 GRBs were analyzed with a search that specifically targets neutron star binary mergers as short GRB progenitors. We find no significant evidence for gravitational-wave signals associated with the GRBs that we followed up, nor for a population of unidentified subthreshold signals. We consider several source types and signal morphologies, and report for these lower bounds on the distance to each GRB.

Journal ArticleDOI
TL;DR: In this paper, a fire detection algorithm based on multiple sensors in different locations to provide reliable real-time fire monitoring is proposed, which takes into account both current and past sensor measurements and evaluates the similarity of sensor signals based on a dynamic time warping distance measure.