scispace - formally typeset
Open AccessJournal ArticleDOI

Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog

Richard J. Abbott, +1431 more
- 19 May 2021 - 
- Vol. 913, Iss: 1, pp 1-41
TLDR
In this article, the population of 47 compact binary mergers detected with a false-alarm rate of 0.614 were dynamically assembled, and the authors found that the BBH rate likely increases with redshift, but not faster than the star formation rate.
Abstract
We report on the population of 47 compact binary mergers detected with a false-alarm rate of 0.01 are dynamically assembled. Third, we estimate merger rates, finding RBBH = 23.9-+8.614.3 Gpc-3 yr-1 for BBHs and RBNS = 320-+240490 Gpc-3 yr-1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility) but not faster than the star formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

read more

Content maybe subject to copyright    Report

Louisiana State University Louisiana State University
LSU Digital Commons LSU Digital Commons
Faculty Publications Department of Physics & Astronomy
5-20-2021
Population properties of compact objects from the second LIGO-Population properties of compact objects from the second LIGO-
Virgo gravitational-wave transient catalog Virgo gravitational-wave transient catalog
R. Abbott
California Institute of Technology
T. D. Abbott
Louisiana State University
S. Abraham
Inter-University Centre for Astronomy and Astrophysics India
F. Acernese
Università degli Studi di Salerno
K. Ackley
Monash University
See next page for additional authors
Follow this and additional works at: https://digitalcommons.lsu.edu/physics_astronomy_pubs
Recommended Citation Recommended Citation
Abbott, R., Abbott, T., Abraham, S., Acernese, F., Ackley, K., Adams, A., Adams, C., Adhikari, R., Adya, V.,
Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O., Aiello, L., Ain, A., Ajith, P., Allen, G., Allocca,
A., Altin, P., Amato, A., Anand, S., Ananyeva, A., Anderson, S., Anderson, W., Angelova, S., Ansoldi, S.,
Antelis, J., Antier, S., Appert, S., Arai, K., Araya, M., & Areeda, J. (2021). Population properties of compact
objects from the second LIGO-Virgo gravitational-wave transient catalog.
Astrophysical Journal Letters,
913
(1) https://doi.org/10.3847/2041-8213/abe949
This Article is brought to you for free and open access by the Department of Physics & Astronomy at LSU Digital
Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital
Commons. For more information, please contact ir@lsu.edu.

Authors Authors
R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya,
C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, G. Allen, A. Allocca,
P. A. Altin, A. Amato, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, S. V. Angelova, S. Ansoldi, J.
M. Antelis, S. Antier, S. Appert, K. Arai, M. C. Araya, and J. S. Areeda
This article is available at LSU Digital Commons: https://digitalcommons.lsu.edu/physics_astronomy_pubs/986

'83?/;<3=B90&/A+<$39;+8./(+66/B'83?/;<3=B90&/A+<$39;+8./(+66/B
%-296+;)9;5<'&$(%-296+;)9;5<'&$(
"2B<3-<+8.<=;9897B+->6=B">,63-+=398<
+8.";/</8=+=398<
966/1/90%-3/8-/<

"9:>6+=398";9:/;=3/<9097:+-=!,4/-=<0;97=2/%/-98."9:>6+=398";9:/;=3/<9097:+-=!,4/-=<0;97=2/%/-98.
!D(3;19;+?3=+=398+6)+?/&;+8<3/8=+=+691!D(3;19;+?3=+=398+6)+?/&;+8<3/8=+=+691
$,,9==
&,,9==
%,;+2+7
!0/53;8296=C
+;6+8'83?/;<3=B$+7+=+8
-/;8/</
%//8/A=:+1/09;+..3=398+6+>=29;<
9669@=23<+8.+..3=398+6@9;5<+=2==:<<-296+;@9;5<>=;1?/.>:+*0+-
"+;=90=2/<=;9:2B<3-<+8.<=;9897B97798<+8.=2/"2B<3-<97798<
$/-977/8./.3=+=398$/-977/8./.3=+=398
,,9==$&,,9==%,;+2+7-/;8/</-56/B.+7<.+7</=+6E"9:>6+=398
";9:/;=3/<9097:+-=!,4/-=<0;97=2/%/-98.!D(3;19;+?3=+=398+6)+?/&;+8<3/8=+=+691F&2/
<=;9:2B<3-+69>;8+6/==/;<2==:<.939;1+,/
&23<;=3-6/3<,;9>12==9B9>09;0;//+8.9:/8+--/<<,B=2/966/1/90%-3/8-/<+=%-296+;)9;5<'&$(=2+<
,//8+--/:=/.09;38-6><39838"2B<3-<+8.<=;9897B+->6=B">,63-+=398<+8.";/</8=+=398<,B+8+>=29;3C/.
+.7383<=;+=9;90%-296+;)9;5<'&$(9;79;/3809;7+=398:6/+</-98=+-=4><=38@23=/>=;1?/.>
@3663+7G9;/<>=;1?/.>

>=29;<>=29;<
$,,9==&,,9==%,;+2+7!0/53;8296=C-/;8/</&/?3/=;/312=98%97+ >52/;4//(965/;
#>/=<-25/ +635$+527+89?+;6+$+73;/C+8.))+81
&23<+;=3-6/3<+?+36+,6/+=%-296+;)9;5<'&$(2==:<<-296+;@9;5<>=;1?/.>:+*0+-

Population Properties of Compact Objects from the Second LIGOVirgo
Gravitational-Wave Transient Catalog
R. Abbott
1
, T. D. Abbott
2
, S. Abraham
3
, F. Acernese
4,5
, K. Ackley
6
, A. Adams
7
, C. Adams
8
, R. X. Adhikari
1
, V. B. Adya
9
,
C. Affeldt
10,11
, M. Agathos
12,13
, K. Agatsuma
14
, N. Aggarwal
15
, O. D. Aguiar
16
, L. Aiello
17,18
, A. Ain
19,20
, P. Ajith
21
,
G. Allen
22
, A. Allocca
19
, P. A. Altin
9
, A. Amato
23
, S. Anand
1
, A. Ananyeva
1
, S. B. Anderson
1
, W. G. Anderson
24
,
S. V. Angelova
25
, S. Ansoldi
26,27
, J. M. Antelis
28
, S. Antier
29
, S. Appert
1
, K. Arai
1
, M. C. Araya
1
, J. S. Areeda
30
, M. Arène
29
,
N. Arnaud
31,32
, S. M. Aronson
33
, K. G. Arun
34
, Y. Asali
35
, S. Ascenzi
17,36
, G. Ashton
6
, S. M. Aston
8
, P. Astone
37
, F. Aubin
38
,
P. Aufmuth
10,11
, K. AultONeal
28
, C. Austin
2
, V. Avendano
39
, S. Babak
29
, F. Badaracco
17,18
, M. K. M. Bader
40
, S. Bae
41
,
A. M. Baer
7
, S. Bagnasco
42
, J. Baird
29
, M. Ball
43
, G. Ballardin
32
, S. W. Ballmer
44
, A. Bals
28
, A. Balsamo
7
, G. Baltus
45
,
S. Banagiri
46
, D. Bankar
3
, R. S. Bankar
3
, J. C. Barayoga
1
, C. Barbieri
47,48,49
, B. C. Barish
1
, D. Barker
50
, P. Barneo
51
,
S. Barnum
52
, F. Barone
5,53
, B. Barr
54
, L. Barsotti
52
, M. Barsuglia
29
, D. Barta
55
, J. Bartlett
50
, I. Bartos
33
, R. Bassiri
56
,
A. Basti
19,20
, M. Bawaj
57,58
, J. C. Bayley
54
, M. Bazzan
59,60
, B. R. Becher
61
, B. Bécsy
62
, V. M. Bedakihale
63
, M. Bejger
64
,
I. Belahcene
31
, D. Beniwal
65
, M. G. Benjamin
28
, T. F. Bennett
66
, J. D. Bentley
14
, F. Bergamin
10,11
, B. K. Berger
56
,
G. Bergmann
10,11
, S. Bernuzzi
13
, C. P. L. Berry
15
, D. Bersanetti
67
, A. Bertolini
40
, J. Betzwieser
8
, R. Bhandare
68
, A. V. Bhandari
3
,
D. Bhattacharjee
69
, J. Bidler
30
, I. A. Bilenko
70
, G. Billingsley
1
, R. Birney
71
, O. Birnholtz
72
, S. Biscans
1,52
, M. Bischi
73,74
,
S. Biscoveanu
52
, A. Bisht
10,11
, M. Bitossi
19,32
, M.-A. Bizouard
75
, J. K. Blackburn
1
, J. Blackman
76
, C. D. Blair
77
, D. G. Blair
77
,
R. M. Blair
50
, O. Blanch
78
, F. Bobba
79,80
, N. Bode
10,11
, M. Boer
75
, Y. Boetzel
81
, G. Bogaert
75
, M. Boldrini
37,82
, F. Bondu
83
,
E. Bonilla
56
, R. Bonnand
38
, P. Booker
10,11
, B. A. Boom
40
, R. Bork
1
, V. Boschi
19
, S. Bose
3
, V. Bossilkov
77
, V. Boudart
45
,
Y. Bouffanais
59,60
, A. Bozzi
32
, C. Bradaschia
19
, P. R. Brady
24
, A. Bramley
8
, M. Branchesi
17,18
, J. E. Brau
43
, M. Breschi
13
,
T. Briant
84
, J. H. Briggs
54
, F. Brighenti
73,74
, A. Brillet
75
, M. Brinkmann
10,11
, P. Brockill
24
, A. F. Brooks
1
, J. Brooks
32
,
D. D. Brown
65
, S. Brunett
1
, G. Bruno
85
, R. Bruntz
7
, A. Buikema
52
, T. Bulik
86
, H. J. Bulten
40,87
, A. Buonanno
88,89
,
R. Buscicchio
14
, D. Buskulic
38
, R. L. Byer
56
, M. Cabero
10,11
, L. Cadonati
90
, M. Caesar
91
, G. Cagnoli
23
, C. Cahillane
1
,
J. Calderón Bustillo
6
, J. D. Callaghan
54
, T. A. Callister
92
, E. Calloni
5,93
, J. B. Camp
94
, M. Canepa
67,95
, K. C. Cannon
96
, H. Cao
65
,
J. Cao
97
, G. Carapella
79,80
, F. Carbognani
32
, M. F. Carney
15
, M. Carpinelli
98,99
, G. Carullo
19,20
, T. L. Carver
100
,
J. Casanueva Diaz
32
, C. Casentini
36,101
, S. Caudill
40
, M. Cavaglià
69
, F. Cavalier
31
, R. Cavalieri
32
, G. Cella
19
, P. Cerdá-Durán
102
,
E. Cesarini
36
, W. Chaibi
75
, K. Chakravarti
3
, C.-L. Chan
103
, C. Chan
96
, K. Chandra
104
, P. Chanial
32
, S. Chao
105
, P. Charlton
106
,
E. A. Chase
15
, E. Chassande-Mottin
29
, D. Chatterjee
24
, D. Chattopadhyay
107
, M. Chaturvedi
68
, K. Chatziioannou
92
, A. Chen
103
,
H. Y. Chen
108
, X. Chen
77
, Y. Chen
76
, H.-P. Cheng
33
, C. K. Cheong
103
, H. Y. Chia
33
, F. Chiadini
80,109
, R. Chierici
110
,
A. Chincarini
67
, A. Chiummo
32
, G. Cho
111
,H.S.Cho
112
, M. Cho
89
, S. Choate
91
, N. Christensen
75
, Q. Chu
77
, S. Chua
84
,
K. W. Chung
113
, S. Chung
77
, G. Ciani
59,60
, P. Ciecielag
64
, M. Cieślar
64
, M. Cifaldi
36,101
, A. A. Ciobanu
65
, R. Ciol
60,114
,
F. Cipriano
75
, A. Cirone
67,95
, F. Clara
50
, E. N. Clark
115
, J. A. Clark
90
, L. Clarke
116
, P. Clearwater
117
, S. Clesse
85
, F. Cleva
75
,
E. Coccia
17,18
, P.-F. Cohadon
84
, D. E. Cohen
31
, M. Colleoni
118
, C. G. Collette
119
, C. Collins
14
, M. Colpi
47,48
, M. Constancio, Jr.
16
,
L. Conti
60
, S. J. Cooper
14
, P. Corban
8
, T. R. Corbitt
2
, I. Cordero-Carrión
120
, S. Corezzi
57,58
, K. R. Corley
35
, N. Cornish
62
,
D. Corre
31
, A. Corsi
121
, S. Cortese
32
, C. A. Costa
16
, R. Cotesta
88
, M. W. Coughlin
1,46
, S. B. Coughlin
15,100
, J.-P. Coulon
75
,
S. T. Countryman
35
, P. Couvares
1
, P. B. Covas
118
, D. M. Coward
77
, M. J. Cowart
8
, D. C. Coyne
1
, R. Coyne
122
,
J. D. E. Creighton
24
, T. D. Creighton
123
, M. Croquette
84
, S. G. Crowder
124
, J. R. Cudell
45
, T. J. Cullen
2
, A. Cumming
54
,
R. Cummings
54
, L. Cunningham
54
, E. Cuoco
32,125
, M. Curylo
86
, T. Dal Canton
31,88
, G. Dálya
126
, A. Dana
56
,
L. M. DaneshgaranBajastani
66
,B.DAngelo
67,95
, S. L. Danilishin
127
,S.DAntonio
36
, K. Danzmann
10,11
, C. Darsow-Fromm
128
,
A. Dasgupta
63
, L. E. H. Datrier
54
, V. Dattilo
32
, I. Dave
68
, M. Davier
31
, G. S. Davies
129
, D. Davis
1
, E. J. Daw
130
, R. Dean
91
,
D. DeBra
56
, M. Deenadayalan
3
, J. Degallaix
131
, M. De Laurentis
5,93
, S. Deléglise
84
, V. Del Favero
132
, F. De Lillo
85
, N. De Lillo
54
,
W. Del Pozzo
19,20
, L. M. DeMarchi
15
, F. De Matteis
36,101
,V.DEmilio
100
, N. Demos
52
, T. Denker
10,11
, T. Dent
129
, A. Depasse
85
,
R. De Pietri
133,134
, R. De Rosa
5,93
, C. De Rossi
32
, R. DeSalvo
80,135
, O. de Varona
10,11
, S. Dhurandhar
3
, M. C. Díaz
123
,
M. Diaz-Ortiz, Jr.
33
, N. A. Didio
44
, T. Dietrich
40
, L. Di Fiore
5
, C. DiFronzo
14
, C. Di Giorgio
79,80
, F. Di Giovanni
102
,
M. Di Giovanni
136,137
, T. Di Girolamo
5,93
, A. Di Lieto
19,20
, B. Ding
119
, S. Di Pace
37,82
, I. Di Palma
37,82
, F. Di Renzo
19,20
,
A. K. Divakarla
33
, A. Dmitriev
14
, Z. Doctor
43
,L.DOnofrio
5,93
, F. Donovan
52
, K. L. Dooley
100
, S. Doravari
3
, I. Dorrington
100
,
T. P. Downes
24
, M. Drago
17,18
, J. C. Driggers
50
,Z.Du
97
, J.-G. Ducoin
31
, P. Dupej
54
, O. Durante
79,80
,D.DUrso
98,99
,
P.-A. Duverne
31
, S. E. Dwyer
50
, P. J. Easter
6
, G. Eddolls
54
, B. Edelman
43
, T. B. Edo
130
, O. Edy
138
,A.Efer
8
, J. Eichholz
9
,
S. S. Eikenberry
33
, M. Eisenmann
38
, R. A. Eisenstein
52
, A. Ejlli
100
, L. Errico
5,93
, R. C. Essick
108
, H. Estellés
118
, D. Estevez
38
,
Z. B. Etienne
139
, T. Etzel
1
, M. Evans
52
, T. M. Evans
8
, B. E. Ewing
140
, V. Fafone
17,36,101
, H. Fair
44
, S. Fairhurst
100
, X. Fan
97
,
A. M. Farah
108
, S. Farinon
67
, B. Farr
43
, W. M. Farr
92,141
, E. J. Fauchon-Jones
100
, M. Favata
39
, M. Fays
45,130
, M. Fazio
142
,
J. Feicht
1
, M. M. Fejer
56
, F. Feng
29
, E. Fenyvesi
55,143
, D. L. Ferguson
90
, A. Fernandez-Galiana
52
, I. Ferrante
19,20
, T. A. Ferreira
16
,
F. Fidecaro
19,20
, P. Figura
86
, I. Fiori
32
, D. Fiorucci
17,18
, M. Fishbach
108
, R. P. Fisher
7
, J. M. Fishner
52
, R. Fittipaldi
80,144
,
M. Fitz-Axen
46
, V. Fiumara
80,145
, R. Flaminio
38,146
, E. Floden
46
, E. Flynn
30
, H. Fong
96
, J. A. Font
102,147
, P. W. F. Forsyth
9
,
J.-D. Fournier
75
, S. Frasca
37,82
, F. Frasconi
19
, Z. Frei
126
, A. Freise
14
, R. Frey
43
, V. Frey
31
, P. Fritschel
52
, V. V. Frolov
8
,
https://doi.org/10.3847/2041-8213/abe949
The Astrophysical Journal Letters, 913:L7 (41pp), 2021 May 20
© 2021 The Author(s). Published by The American Astronomical Society.
1
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Figures
Citations
More filters
Journal ArticleDOI

Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences

Richard J. Abbott, +1695 more
TL;DR: In this article, the authors reported the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries.
Journal ArticleDOI

Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run

Richard J. Abbott, +1681 more
- 15 Jul 2021 - 
TL;DR: In this article, the authors report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs.
Journal ArticleDOI

The cosmic merger rate density of compact objects: impact of star formation, metallicity, initial mass function, and binary evolution

TL;DR: In this article, the authors evaluate the redshift distribution of binary black hole (BBH), black hole - neutron star binary (BHNS) and binary neutron star (BNS) mergers, exploring the main sources of uncertainty: star formation rate (SFR) density, metallicity evolution, common envelope, mass transfer via Roche lobe overflow, natal kicks, core-collapse supernova model and initial mass function.
Journal ArticleDOI

Rates of compact object coalescences

TL;DR: In this paper , the authors summarise the existing observational and theoretical knowledge of compact-binary coalescence rates, and present a survey of the existing observations and theoretical models of compact binary coalescence.
References
More filters
Journal ArticleDOI

emcee: The MCMC Hammer

TL;DR: The emcee algorithm as mentioned in this paper is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010).
Book

Theory of probability

TL;DR: In this paper, the authors introduce the concept of direct probabilities, approximate methods and simplifications, and significant importance tests for various complications, including one new parameter, and various complications for frequency definitions and direct methods.
Journal ArticleDOI

Stan : A Probabilistic Programming Language

TL;DR: Stan as discussed by the authors is a probabilistic programming language for specifying statistical models, where a program imperatively defines a log probability function over parameters conditioned on specified data and constants, which can be used in alternative algorithms such as variational Bayes, expectation propagation, and marginal inference using approximate integration.
Journal ArticleDOI

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Journal ArticleDOI

Cosmic Star-Formation History

TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Related Papers (5)

GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run

Richard J. Abbott, +1351 more

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

B. P. Abbott, +1148 more
- 04 Sep 2019 - 

GW190521: A Binary Black Hole Merger with a Total Mass of 150 M

R. Abbott, +1335 more

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more

Advanced Virgo: a second-generation interferometric gravitational wave detector

Fausto Acernese, +233 more
Frequently Asked Questions (13)
Q1. What have the authors contributed in "Population properties of compact objects from the second ligo-virgo gravitational-wave transient catalog" ?

The authors report on the population of 47 compact binary mergers detected with a false-alarm rate of < 1 yr 1 in the second LIGO–Virgo Gravitational-WaveTransientCatalog. 

4. the authors detect clear evidence of spin-induced, general relativistic precession of the orbital plane. As future observations subject their models to increasing scrutiny, it is inevitable that refinements will be required to fit newly resolved features. 

The spin-tilt distribution from Talbot & Thrane (2017) is a mixture model comprising two components: an isotropic component designed to model dynamically assembled binaries and a component in which the spins are preferentially aligned with the orbital angular momentum, as expected for isolated field binaries. 

If hierarchical mergers are present in GWTC-2, then one may expect correlations between the spins and masses of BBH systems, with more massive hierarchical mergers also possessing larger spins. 

The presence of BBH systems with negative effectiveinspiral spin parameters carries implications for the formation channels that give rise to stellar-mass BBH mergers. 

Selection effects can, however, only decrease the efficiency with which events with large inplane spins are detected; incorporating such effects would further shift the posterior in Figure 9 away from z = 1 and s = 0t and/or more strongly rule out a delta function at c = 0p . 

It was envisioned (Talbot & Thrane 2018) that the power-law component of the POWER LAW + PEAK model would terminate in the vicinity of this peak to create a high-mass gap. 

Since their statistical framework relies on accurately quantifying the selection effects of their search, the authors only include events identified in GWTC-2, for which the authors have measured the search sensitivity; see Appendix A. 

because of selection effects, the posterior predictive distribution skews to much higher masses, as seen in Figure 4, so that the probability of detecting at least one event with m M801 after observing 44 BBH events drawn from the POWER LAW + PEAK posterior predictive distribution of Figure 4 is high: 32%. 

As mentioned above, dynamical formation in dense clustersis not the only astrophysical explanation of negative effective inspiral spin parameters. 

In particular, when measuring the mean mp and standard deviation sp of the cp distribution, the case m s= = 0p p is ruled out at>99% credibility; fewer than 1% of posterior samples occur at m 0.05p and s 0.05p . 

For the POWER LAW + PEAK model, which includes a fraction lpeak of systems in the Gaussian component, the authors compare the submodel with l = 0peak . 

because their mass distribution models do not extrapolate well to <m M32 (see Section 5.1), the fit with GW190814 likely overestimates the rate of systems with masses between ∼2.6 and ∼ M6 .