scispace - formally typeset
Search or ask a question
Institution

National Aerospace Laboratories

FacilityBengaluru, India
About: National Aerospace Laboratories is a facility organization based out in Bengaluru, India. It is known for research contribution in the topics: Coating & Corrosion. The organization has 1838 authors who have published 2349 publications receiving 36888 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, powder samples of TaC0.98 sandwiched between aluminum disks were placed in a rhenium gasket and compressed in a diamond anvil cell and the diffraction data were analyzed using lattice strain theory to estimate, the difference between the axial and radial stress components in the sample.
Abstract: Powder samples of TaC0.98 sandwiched between aluminum disks were placed in a rhenium gasket and compressed in a diamond anvil cell. The X-ray diffraction patterns were recorded under pressures up to 50 GPa using synchrotron radiation. The presence of aluminum in the cell rendered the sample pressure nearly hydrostatic and also served as the pressure standard. In another set experiments,TaC0.98 powder mixed with small quantity of platinum powder was placed in stainless steel gasket and compressed between the anvils. The X-ray diffraction patterns were recorded up to 76 GPa. In absence of any pressure-transmitting medium, the stress state of the sample was expected to be highly nonhydrostatic. The diffraction data were analyzed using lattice strain theory to estimate, the difference between the axial and radial stress components in the sample. The magnitudes of t suggest that the lower limit13; of compressive strength of TaC0.98 increases with increasing pressure and reaches -11 GPa at 76 GPa pressure. No phase transformation was observed up to the highest pressure. The bulk modulus and its pressure derivative derived from the volume-compression-pressure data are 345(9) GPa and 4.0(4), respectively.

36 citations

Book ChapterDOI
01 Jan 1997
TL;DR: In this paper, several five-year programs have been conducted over the past ten years in order to develop the architecture of FGMs, and also to develop these materials for high temperature applications (e.g., components for the hypersonic space plane) and for functional applications, such as thermoelectric and thermionic converters).
Abstract: The FGM concept can be applied to various material fields for structural and functional uses. In Japan, several five-year programs have been conducted over the past ten years in order to develop the architecture of FGMs, and also to develop these materials for high temperature applications (e.g., components for the hypersonic space plane) and for functional applications (e.g., thermoelectric and thermionic converters). These programs are discussed with respect to the construction of FGM architecture and the future of FGMs.

36 citations

Journal ArticleDOI
TL;DR: In this article, a new theory of instability based on full Navier-Stokes equation was proposed to explain the observed temporal instability sequence in terms of instability, which does not require making any assumption about the flow field.

36 citations

Journal ArticleDOI
TL;DR: The combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.
Abstract: Vanadium oxide-molybdenum oxide (VO-MO) thin (21–475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45–50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10−5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

36 citations

Journal ArticleDOI
TL;DR: In this article, an experimental study was conducted to control the unsteadiness of separation shock in a Mach 2 24° compression ramp-induced interaction using mechanical vortex generators (VG).
Abstract: An experimental study was conducted to control the unsteadiness of separation shock in a Mach 2 24° compression ramp-induced interaction using mechanical vortex generators (VG). Control devices in the form of an array of single-row delta-ramps were placed upstream of the interaction region and tested for two streamwise locations with respect to the boundary layer thickness (δ) at the interaction location and height ‘h’ of the delta-ramps, i.e., at 27.5δ or h/δ = 0.65 and at 12.5δ or h/δ = 0.26, respectively. Surface oil study revealed traces of streamwise counter-rotating vortex pairs generated downstream of these devices. Measurements using pressure-sensitive paint also showed a spanwise sinusoidal pattern of wall pressure variation indicating generation of streamwise vortices from these control devices. These vortices, on interaction with the reverse flow in the separation bubble, replaced a well-defined separation line (for no control) by a highly corrugated separation line. In the region of separation, the mean pressure distribution gets modified while the peak rms value in the intermittent region of separation showed significant changes. Additionally, the spanwise spacing ‘s’ of the vertex of the delta ramps seemed to be an important parameter in controlling the peak rms value. A decrease in this spacing, i.e., VG1 with s = 0, significantly reduced the peak rms value (by 50 and 35 %) while an increase in the spacing, i.e., VG2 with s = 1 mm, consistently showed an increase (by 12 and 30 %) in the separation shock unsteadiness relative to no control, irrespective of their placement location (of h/δ = 0.65 and 0.26, respectively).

36 citations


Authors

Showing all 1850 results

NameH-indexPapersCitations
Harish C. Barshilia462366825
K.S. Rajam42834765
Kozo Fujii394115845
Parthasarathi Bera391365329
R.P.S. Chakradhar361664423
T. N. Guru Row363095186
Takashi Ishikawa361545019
Henk A. P. Blom341685992
S. Ranganathan332115660
S.T. Aruna331014954
Arun M. Umarji332073582
Vinod K. Gaur33924003
Keisuke Asai313503914
K. J. Vinoy302403423
Gangan Prathap302413466
Network Information
Related Institutions (5)
Indian Institute of Technology Madras
36.4K papers, 590.4K citations

88% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

88% related

Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

86% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

86% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202216
2021143
2020100
201996
2018119