scispace - formally typeset
Search or ask a question
Institution

Texas A&M University

EducationCollege Station, Texas, United States
About: Texas A&M University is a education organization based out in College Station, Texas, United States. It is known for research contribution in the topics: Population & Gene. The organization has 72169 authors who have published 164372 publications receiving 5764236 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors characterized the phase composition of the NiO/Al 2 O 3 phase of a 25 wt% NiO+Al 2O 3 catalyst for complete oxidation of methane feed to CO 2 and H 2 O. The authors showed that the previously calcined catalyst bed consists of three different regions.

703 citations

Journal ArticleDOI
TL;DR: Dietary supplementation with specific amino acids may be beneficial for increasing the chemo-attractive property and nutritional value of aquafeeds with low fishmeal inclusion, and enhancing immunity and tolerance to environmental stresses.
Abstract: Recent evidence shows that some amino acids and their metabolites are important regulators of key metabolic pathways that are necessary for maintenance, growth, feed intake, nutrient utilization, immunity, behavior, larval metamorphosis, reproduction, as well as resistance to environmental stressors and pathogenic organisms in various fishes. Therefore, conventional definitions on essential and nonessential amino acids for fish are challenged by numerous discoveries that taurine, glutamine, glycine, proline and hydroxyproline promote growth, development, and health of aquatic animals. On the basis of their crucial roles in cell metabolism and physiology, we anticipate that dietary supplementation with specific amino acids may be beneficial for: (1) increasing the chemo-attractive property and nutritional value of aquafeeds with low fishmeal inclusion; (2) optimizing efficiency of metabolic transformation in juvenile and sub-adult fishes; (3) surpressing aggressive behaviors and cannibalism; (4) increasing larval performance and survival; (5) mediating timing and efficiency of spawning; (6) improving fillet taste and texture; and (7) enhancing immunity and tolerance to environmental stresses. Functional amino acids hold great promise for development of balanced aquafeeds to enhance the efficiency and profitability of global aquaculture production.

703 citations

Journal ArticleDOI
03 Apr 2012
TL;DR: This work overviews CPS research from both a historical point of view in terms of technologies developed for early generations of control systems, as well as recent results on CPSs in many relevant research domains such as networked control, hybrid systems, real-time computing,real-time networking, wireless sensor networks, security, and model-driven development.
Abstract: Cyber-physical systems (CPSs) are the next generation of engineered systems in which computing, communication, and control technologies are tightly integrated. Research on CPSs is fundamentally important for engineered systems in many important application domains such as transportation, energy, and medical systems. We overview CPS research from both a historical point of view in terms of technologies developed for early generations of control systems, as well as recent results on CPSs in many relevant research domains such as networked control, hybrid systems, real-time computing, real-time networking, wireless sensor networks, security, and model-driven development. We outline the potential for CPSs in many societally important application domains.

702 citations

Journal ArticleDOI
TL;DR: DNA fragments from 5% polyacrylamide gels were efficiently blotted after 36 h onto nitrocellulose filters using bidirectional transfer and were shown to be efficient substrates for homologous [32P]DNA probes.

702 citations

Proceedings Article
01 Jan 2020
TL;DR: GraphCL as discussed by the authors proposes a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data, which can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
Abstract: Generalizable, transferrable, and robust representation learning on graph-structured data remains a challenge for current graph neural networks (GNNs). Unlike what has been developed for convolutional neural networks (CNNs) for image data, self-supervised learning and pre-training are less explored for GNNs. In this paper, we propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data. We first design four types of graph augmentations to incorporate various priors. We then systematically study the impact of various combinations of graph augmentations on multiple datasets, in four different settings: semi-supervised, unsupervised, and transfer learning as well as adversarial attacks. The results show that, even without tuning augmentation extents nor using sophisticated GNN architectures, our GraphCL framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods. We also investigate the impact of parameterized graph augmentation extents and patterns, and observe further performance gains in preliminary experiments. Our codes are available at this https URL.

700 citations


Authors

Showing all 72708 results

NameH-indexPapersCitations
Yi Chen2174342293080
Scott M. Grundy187841231821
Evan E. Eichler170567150409
Yang Yang1642704144071
Martin Karplus163831138492
Robert Stone1601756167901
Philip Cohen154555110856
Claude Bouchard1531076115307
Jongmin Lee1502257134772
Zhenwei Yang150956109344
Vivek Sharma1503030136228
Frede Blaabjerg1472161112017
Steven L. Salzberg147407231756
Mikhail D. Lukin14660681034
John F. Hartwig14571466472
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

97% related

Pennsylvania State University
196.8K papers, 8.3M citations

97% related

University of Maryland, College Park
155.9K papers, 7.2M citations

96% related

University of California, Davis
180K papers, 8M citations

95% related

University of Texas at Austin
206.2K papers, 9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023211
2022938
20218,666
20208,925
20198,426