scispace - formally typeset
Search or ask a question

Showing papers by "University of Antananarivo published in 2020"


Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +966 moreInstitutions (155)
TL;DR: The Deep Underground Neutrino Experiment (DUNE) as discussed by the authors is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model.
Abstract: The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology.

187 citations


Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +972 moreInstitutions (153)
TL;DR: The Dune experiment as discussed by the authors is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model.
Abstract: The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. Central to achieving DUNE's physics program is a far detector that combines the many tens-of-kiloton fiducial mass necessary for rare event searches with sub-centimeter spatial resolution in its ability to image those events, allowing identification of the physics signatures among the numerous backgrounds. In the single-phase liquid argon time-projection chamber (LArTPC) technology, ionization charges drift horizontally in the liquid argon under the influence of an electric field towards a vertical anode, where they are read out with fine granularity. A photon detection system supplements the TPC, directly enhancing physics capabilities for all three DUNE physics drivers and opening up prospects for further physics explorations. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume IV presents an overview of the basic operating principles of a single-phase LArTPC, followed by a description of the DUNE implementation. Each of the subsystems is described in detail, connecting the high-level design requirements and decisions to the overriding physics goals of DUNE.

109 citations


Proceedings ArticleDOI
04 May 2020
TL;DR: A network architecture with a novel basic block to replace the one used by the original ESRGAN is designed and noise inputs to the generator network are introduced in order to exploit stochastic variation.
Abstract: Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) is a perceptual-driven approach for single image super-resolution that is able to produce photorealistic images. Despite the visual quality of these generated images, there is still room for improvement. In this fashion, the model is extended to further improve the perceptual quality of the images. We have designed a network architecture with a novel basic block to replace the one used by the original ESRGAN. Moreover, we introduce noise inputs to the generator network in order to exploit stochastic variation. The resulting images present more realistic textures.

102 citations


Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +975 moreInstitutions (155)
TL;DR: The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and full simulation and parameterized analysis of the near detector as mentioned in this paper.
Abstract: The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin 22 θ13 to current reactor experiments.

88 citations


Journal ArticleDOI
TL;DR: Selenium (Se) has been overlooked but may have a significant place in COVID-19 spectrum management, particularly in vulnerable elderly, and might represent a game changer in the global response to CO VID-19.
Abstract: SARS-CoV-2 is an RNA virus responsible for the COVID-19 pandemic that already claimed more than 340,000 lives worldwide as of May 23, 2020, the majority of which are elderly. Selenium (Se), a natural trace element, has a key and complex role in the immune system. It is well-documented that Se deficiency is associated with higher susceptibility to RNA viral infections and more severe disease outcome. In this article, we firstly present evidence on how Se deficiency promotes mutations, replication and virulence of RNA viruses. Next, we review how Se might be beneficial via restoration of host antioxidant capacity, reduction of apoptosis and endothelial cell damages as well as platelet aggregation. It also appears that low Se status is a common finding in conditions considered at risk of severe COVID-19, especially in the elderly. Finally, we present a rationale for Se use at different stages of COVID-19. Se has been overlooked but may have a significant place in COVID-19 spectrum management, particularly in vulnerable elderly, and might represent a game changer in the global response to COVID-19.

82 citations


Journal ArticleDOI
B. Abi1, A. Abed Abud2, A. Abed Abud3, R. Acciarri4  +1019 moreInstitutions (158)
TL;DR: The ProtoDune-SP detector as discussed by the authors is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3.
Abstract: The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.

72 citations


Journal ArticleDOI
TL;DR: The purpose of this review is to gather and describe the data concerning the main chemical components produced by Artemisia annua and to describe the state of the art about the biological activities reported for this plant and its compounds beyond malaria.
Abstract: Traditional remedies have been used for thousand years for the prevention and treatment of infectious diseases, particularly in developing countries. Of growing interest, the plant Artemisia annua, known for its malarial properties, has been studied for its numerous biological activities including metabolic, anti-tumor, anti-microbial and immunomodulatory properties. Artemisia annua is very rich in secondary metabolites such as monoterpenes, sesquiterpenes and phenolic compounds, of which the biological properties have been extensively studied. The purpose of this review is to gather and describe the data concerning the main chemical components produced by Artemisia annua and to describe the state of the art about the biological activities reported for this plant and its compounds beyond malaria.

56 citations


Journal ArticleDOI
29 Apr 2020-Nature
TL;DR: The skeleton of Adalatherium hui, a newly discovered gondwanatherian mammal from Madagascar dated to near the end of the Cretaceous period, shows features consistent with a long evolutionary trajectory of isolation in an insular environment.
Abstract: The fossil record of mammaliaforms (mammals and their closest relatives) of the Mesozoic era from the southern supercontinent Gondwana is far less extensive than that from its northern counterpart, Laurasia1,2. Among Mesozoic mammaliaforms, Gondwanatheria is one of the most poorly known clades, previously represented by only a single cranium and isolated jaws and teeth1–5. As a result, the anatomy, palaeobiology and phylogenetic relationships of gondwanatherians remain unclear. Here we report the discovery of an articulated and very well-preserved skeleton of a gondwanatherian of the latest age (72.1–66 million years ago) of the Cretaceous period from Madagascar that we assign to a new genus and species, Adalatherium hui. To our knowledge, the specimen is the most complete skeleton of a Gondwanan Mesozoic mammaliaform that has been found, and includes the only postcranial material and ascending ramus of the dentary known for any gondwanatherian. A phylogenetic analysis including the new taxon recovers Gondwanatheria as the sister group to Multituberculata. The skeleton, which represents one of the largest of the Gondwanan Mesozoic mammaliaforms, is particularly notable for exhibiting many unique features in combination with features that are convergent on those of therian mammals. This uniqueness is consistent with a lineage history for A. hui of isolation on Madagascar for more than 20 million years. Adalatherium hui, a newly discovered gondwanatherian mammal from Madagascar dated to near the end of the Cretaceous period, shows features consistent with a long evolutionary trajectory of isolation in an insular environment.

41 citations


Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +983 moreInstitutions (160)
TL;DR: In this paper, a deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrinos charged-current interactions.
Abstract: The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure $CP$-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to $CP$-violating effects.

39 citations


Journal ArticleDOI
TL;DR: This work examined the functional and community ecology of Madagascar's grasslands across 71 communities in the Central Highlands and identified distinct grass assemblages each shaped by fire or grazing.
Abstract: The ecology of Madagascar's grasslands is under-investigated and the dearth of ecological understanding of how disturbance by fire and grazing shapes these grasslands stems from a perception that d...

38 citations


Posted ContentDOI
18 Sep 2020-medRxiv
TL;DR: Assessment of the false positive rates obtained with four commercially available IgG ELISAs in serum panels originating from three different African countries finds that three of them are likely to be false positive.
Abstract: Specific serological tests are mandatory for reliable SARS-CoV-2 seroprevalence studies but assay specificity may vary considerably between populations due to interference of immune responses to other pathogens. Here, we assess the false positive rates obtained with four commercially available IgG ELISAs in serum/plasma panels originating from three different African countries. Article summary line Several commercially available SARS-CoV-2 ELISAs show limited specificity when applied to serum panels of African origin.

Journal ArticleDOI
TL;DR: The detection of a broad spectrum of vector-borne bacteria including potential pathogens, and an unexpected finding of Y. pestis far off the known plague foci in Madagascar are presented.

Journal ArticleDOI
TL;DR: The picture emerging from phrase combinatorics in the indri is in agreement with previous findings of rhythmic features and song repertoire size of the indris, which also suggested that female songs are potentially less stereotyped than those of males.
Abstract: Animal acoustic communication often takes the form of complex sequences, composed of multiple distinct acoustic units, which can vary in their degree of stereotypy. Studies of sequence variation may contribute to our understanding of the structural flexibility of primates' songs, which can provide essential ecological and behavioral information about variability at the individual, population, and specific level and provide insights into the mechanisms and drivers responsible for the evolutionary change of communicative traits. Several methods have been used for investigating different levels of structural information and sequence similarity in acoustic displays. We studied intra and interindividual variation in the song structuring of a singing primate, the indri (Indri indri), which inhabits the montane rain forests of Madagascar. Indri groups emit duets and choruses in which they combine long notes, short single units, and phrases consisting of a variable number of units (from two to six) with slightly descending frequency. Males' and females' contributions to the song differ in the temporal and frequency structure of song units and repertoire size. We calculated the similarity of phrase organization across different individual contributions using the Levenshtein distance, a logic distance that expressed the minimum cost to convert a sequence into another and can measure differences between two sequences of data. We then analyzed the degree of similarity within and between individuals and found that: (a) the phrase structure of songs varied between reproductive males and females: female structuring of the song showed a higher number of phrases if compared to males; (b) male contributions to the song were overall more similar to those of other males than were female contributions to the song of other females; (c) male contributions were more stereotyped than female contributions, which showed greater individual flexibility. The picture emerging from phrase combinatorics in the indris is in agreement with previous findings of rhythmic features and song repertoire size of the indris, which also suggested that female songs are potentially less stereotyped than those of males.

Journal ArticleDOI
TL;DR: This handbook provides brief descriptions of 34 traits and list important environmental filters and their relevance, provide detailed sampling methodologies and outline potential pitfalls for each trait.
Abstract: Plant functional traits provide a valuable tool to improve our understanding of ecological processes at a range of scales. Previous handbooks on plant functional traits have highlighted the importance of standardising measurements of traits to improve our understanding of ecological and evolutionary processes. In open ecosystems (i.e. grasslands, savannas, open woodlands and shrublands), traits related to disturbance (e.g. herbivory, drought, and fire) play a central role in explaining species performance and distributions and are the focus of this handbook. We provide brief descriptions of 34 traits and list important environmental filters and their relevance, provide detailed sampling methodologies and outline potential pitfalls for each trait. We have grouped traits according to plant functional type (grasses, forbs and woody plants) and, because demographic stages may experience different selective pressures, we have separated traits according to the different plant life stages (seedlings saplings and adults). We have attempted to not include traits that have been covered in previous handbooks except for where updates or additional information was considered beneficial.

Journal ArticleDOI
TL;DR: The incidence of COVID-19 cases as of July 2020 can be explained by any combination of the late introduction of first imported cases, early implementation of non-pharmaceutical interventions (NPIs), and low case detection rates, and is reinforced that Madagascar, along with other countries in SSA, remains at risk of a growing health crisis.
Abstract: COVID-19 has wreaked havoc globally with particular concerns for sub-Saharan Africa (SSA), where models suggest that the majority of the population will become infected. Conventional wisdom suggests that the continent will bear a higher burden of COVID-19 for the same reasons it suffers from other infectious diseases: ecology, socio-economic conditions, lack of water and sanitation infrastructure, and weak health systems. However, so far SSA has reported lower incidence and fatalities compared to the predictions of standard models and the experience of other regions of the world. There are three leading explanations, each with different implications for the final epidemic burden: (1) low case detection, (2) differences in epidemiology (e.g. low R 0 ), and (3) policy interventions. The low number of cases have led some SSA governments to relaxing these policy interventions. Will this result in a resurgence of cases? To understand how to interpret the lower-than-expected COVID-19 case data in Madagascar, we use a simple age-structured model to explore each of these explanations and predict the epidemic impact associated with them. We show that the incidence of COVID-19 cases as of July 2020 can be explained by any combination of the late introduction of first imported cases, early implementation of non-pharmaceutical interventions (NPIs), and low case detection rates. We then re-evaluate these findings in the context of the COVID-19 epidemic in Madagascar through August 2020. This analysis reinforces that Madagascar, along with other countries in SSA, remains at risk of a growing health crisis. If NPIs remain enforced, up to 50,000 lives may be saved. Even with NPIs, without vaccines and new therapies, COVID-19 could infect up to 30% of the population, making it the largest public health threat in Madagascar for the coming year, hence the importance of clinical trials and continually improving access to healthcare.

Journal ArticleDOI
TL;DR: Cryptosporidiosis in rural sub-Saharan Africa is characterized by infection clusters among human contacts, to which zoonotic transmission appears to contribute only marginally.
Abstract: BACKGROUND Cryptosporidiosis has been identified as one of the major causes of diarrhea and diarrhea-associated deaths in young children in sub-Saharan Africa. This study traces back Cryptosporidium-positive children to their human and animal contacts to identify transmission networks. METHODS Stool samples were collected from children < 5 years of age with diarrhea in Gabon, Ghana, Madagascar, and Tanzania. Cryptosporidium-positive and -negative initial cases (ICs) were followed to the community, where stool samples from households, neighbors, and animal contacts were obtained. Samples were screened for Cryptosporidium species by immunochromatographic tests and by sequencing the 18S ribosomal RNA gene and further subtyped at the 60 kDa glycoprotein gene (gp60). Transmission clusters were identified and risk ratios (RRs) calculated. RESULTS Among 1363 pediatric ICs, 184 (13%) were diagnosed with Cryptosporidium species. One hundred eight contact networks were sampled from Cryptosporidium-positive and 68 from negative ICs. Identical gp60 subtypes were detected among 2 or more contacts in 39 (36%) of the networks from positive ICs and in 1 contact (1%) from negative ICs. In comparison to Cryptosporidium-negative ICs, positive ICs had an increased risk of having Cryptosporidium-positive household members (RR, 3.6 [95% confidence interval {CI}, 1.7-7.5]) or positive neighboring children (RR, 2.9 [95% CI, 1.6-5.1]), but no increased risk of having positive animals (RR, 1.2 [95% CI, .8-1.9]) in their contact network. CONCLUSIONS Cryptosporidiosis in rural sub-Saharan Africa is characterized by infection clusters among human contacts, to which zoonotic transmission appears to contribute only marginally.

Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +972 moreInstitutions (153)
TL;DR: The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model as discussed by the authors.
Abstract: The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.

Journal ArticleDOI
25 Nov 2020-Nature
TL;DR: expression of this phenotype (and presumed ecology) in a stem bird underscores that consolidation to the neornithine-like, premaxilla-dominated rostrum was not an evolutionary prerequisite for beak enlargement.
Abstract: Mesozoic birds display considerable diversity in size, flight adaptations and feather organization1–4, but exhibit relatively conserved patterns of beak shape and development5–7. Although Neornithine (that is, crown group) birds also exhibit constraint on facial development8,9, they have comparatively diverse beak morphologies associated with a range of feeding and behavioural ecologies, in contrast to Mesozoic birds. Here we describe a crow-sized stem bird, Falcatakely forsterae gen. et sp. nov., from the Late Cretaceous epoch of Madagascar that possesses a long and deep rostrum, an expression of beak morphology that was previously unknown among Mesozoic birds and is superficially similar to that of a variety of crown-group birds (for example, toucans). The rostrum of Falcatakely is composed of an expansive edentulous maxilla and a small tooth-bearing premaxilla. Morphometric analyses of individual bony elements and three-dimensional rostrum shape reveal the development of a neornithine-like facial anatomy despite the retention of a maxilla–premaxilla organization that is similar to that of nonavialan theropods. The patterning and increased height of the rostrum in Falcatakely reveals a degree of developmental lability and increased morphological disparity that was previously unknown in early branching avialans. Expression of this phenotype (and presumed ecology) in a stem bird underscores that consolidation to the neornithine-like, premaxilla-dominated rostrum was not an evolutionary prerequisite for beak enlargement. A crow-sized stem bird, Falcatakely forsterae, possesses a long and deep rostrum—a beak morphology that was previously unknown among Mesozoic birds and is similar to that of some crown-group birds, such as toucans.

Journal ArticleDOI
TL;DR: IDFP is a culture plate that facilitates and improves the identification of filamentous fungi, allowing accurate routine identification of molds with MALDI-TOF-MS using a rapid-extraction protocol.
Abstract: MALDI-TOF mass spectrometry (MS) identification of pathogenic filamentous fungi is often impaired by difficulties in harvesting hyphae embedded in the medium and long extraction protocols. The ID Fungi Plate (IDFP) is a novel culture method developed to address such difficulties and improve the identification of filamentous fungi by MALDI-TOF MS. We cultured 64 strains and 11 clinical samples on IDFP, Sabouraud agar-chloramphenicol (SAB), and ChromID Candida agar (CAN2). We then compared the three media for growth, ease of harvest, amount of material picked, and MALDI-TOF identification scores after either rapid direct transfer (DT) or a long ethanol-acetonitrile (EA) extraction protocol. Antifungal susceptibility testing and microscopic morphology after subculture on SAB and IDFP were also compared for ten molds. Growth rates and morphological aspects were similar for the three media. With IDFP, harvesting of fungal material for the extraction procedure was rapid and easy in 92.4% of cases, whereas it was tedious on SAB or CAN2 in 65.2% and 80.3% of cases, respectively. The proportion of scores above 1.7 (defined as acceptable identification) were comparable for both extraction protocols using IDFP (P = 0.256). Moreover, rates of acceptable identification after DT performed on IDFP (93.9%) were significantly higher than those obtained after EA extraction with SAB (69.7%) or CAN2 (71.2%) (P =

Journal ArticleDOI
TL;DR: To optimize the nutrient management of upland rice production on tropical ferralsols, a greenhouse experiment was established using the multi-nutrient omission approach in this paper, where a reciprocal soil o...
Abstract: To optimize the nutrient management of upland rice production on tropical ferralsols, a greenhouse experiment was established using the multi-nutrient omission approach. A reciprocal soil o...

Journal ArticleDOI
21 Jan 2020
TL;DR: In this article, the authors explore how two key telecoupling dynamics affect local well-being in the biodiversity hotspot of Madagascar, focusing on forest frontier landscapes, which are undergoing processes of agricultural intensification as a consequence of distant factors.
Abstract: Global change processes are increasing their pace and reach, leading to telecoupled situations, where distant factors come to outpace local determinants of land use change. Often, these dynamics drive agricultural intensification processes, with as yet unclear implications for the well-being of human populations living in the areas affected. This study explores how two key telecoupling dynamics affect local well-being in the biodiversity hotspot of Madagascar. It focuses on forest frontier landscapes, which are undergoing processes of agricultural intensification as a consequence of distant factors. Concretely, we look at how the recent establishment of two, largely externally funded, terrestrial protected areas, Masoala National Park and Makira Natural Park, and the ongoing price boom for two export cash crops, vanilla and clove, have influenced the well-being of local populations in the country’s north-east. We present data from eight focus group discussions conducted in four villages located on the periphery of the two protected areas. Drawing on the ‘capabilities approach’, we identify the key components of the local understanding of well-being, lay out the interconnections between these components, and explore how the two telecoupling processes explored affect well-being dynamics. Our findings reveal that well-being components present bundle characteristics, where increases or decreases in one component lead to parallel increases or decreases in a set of them. We further ascertain that telecoupling processes might lead to trade-offs between well-being components. These findings highlight the need for a holistic understanding of human well-being when planning protected areas, and when designing governance mechanisms to steer local landscapes under intense cash crop price fluctuations towards sustainable outcomes.

Journal ArticleDOI
15 Apr 2020-PLOS ONE
TL;DR: In insight into the socio-economic impacts of the dramatic spread of the marbled crayfish invasion in Madagascar, food preference ranking and market surveys revealed the acceptance of marbledcrayfish as a cheap source of animal protein; a clear positive in a country with widespread malnutrition.
Abstract: The negative environmental and economic impacts of many invasive species are well known. However, given the increased homogenization of global biota, and the difficulty of eradicating species once established, a balanced approach to considering the impacts of invasive species is needed. The marbled crayfish (Procambarus virginalis) is a parthenogenetic freshwater crayfish that was first observed in Madagascar around 2005 and has spread rapidly. We present the results of a socio-economic survey (n = 385) in three regions of Madagascar that vary in terms of when the marbled crayfish first arrived. Respondents generally considered marbled crayfish to have a negative impact on rice agriculture and fishing, however the animals were seen as making a positive contribution to household economy and food security. Regression modeling showed that respondents in regions with longer experience of marbled crayfish have more positive perceptions. Unsurprisingly, considering the perception that crayfish negatively impact rice agriculture, those not involved in crayfish harvesting and trading had more negative views towards the crayfish than those involved in crayfish-related activities. Food preference ranking and market surveys revealed the acceptance of marbled crayfish as a cheap source of animal protein; a clear positive in a country with widespread malnutrition. While data on biodiversity impacts of the marbled crayfish invasion in Madagascar are still completely lacking, this study provides insight into the socio-economic impacts of the dramatic spread of this unique invasive species. "Biby kely tsy fantam-piaviana, mahavelona fianakaviana" (a small animal coming from who knows where which supports the needs of the family). Government worker Analamanga, Madagascar.

Journal ArticleDOI
18 May 2020-PLOS ONE
TL;DR: The results indicate that "Madagascar copal" is a Recent resin, up to a few hundred years old, that originated from Hymenaea trees growing in the lowland coastal forests, one of the most endangered ecosystems in the world.
Abstract: The loss of biodiversity during the Anthropocene is a constant topic of discussion, especially in the top biodiversity hotspots, such as Madagascar. In this regard, the study of preserved organisms through time, like those included in "Madagascar copal", is of relevance. "Madagascar copal" originated from the leguminous tree Hymenaea verrucosa, which produced and produces resin abundantly. In the last 20 years, interest has focused on the scientific study of its biological inclusions, mainly arthropods, described in dozens of publications. The age and origin of the deposits of "Madagascar copal" have not yet been resolved. Our objectives are to determine its age and geographical origin, and thus increase its scientific value as a source of biological/palaeobiological information. Although Hymenaea was established in Madagascar during the Miocene, we did not find geological deposits of copal or amber in the island. It is plausible that the evolution of those deposits was negatively conditioned by the type of soil, by the climate, and by the development of soil/litter microorganisms, which inhibit preservation of the resin pieces in the litter and subsoil over 300 years. Our results indicate that "Madagascar copal" is a Recent resin, up to a few hundred years old, that originated from Hymenaea trees growing in the lowland coastal forests, one of the most endangered ecosystems in the world. The included and preserved biota is representative of that ecosystem today and during historical times. Inclusions in this Recent resin do not have the palaeontological significance that has been mistakenly attributed to them, but they do have relevant implications for studies regarding Anthropocene biodiversity loss in this hottest hotspot.

Journal ArticleDOI
01 Mar 2020-Oryx
TL;DR: The ploughshare tortoise has been estimated to have a population of c. 500 adults and subadults in 2014 and 2015 as mentioned in this paper, respectively, and the number of trafficked tortoises has increased sharply since 2010.
Abstract: The illegal wildlife trade is driving declines in populations of a number of large, charismatic animal species but also many lesser known and restricted-range species, some of which are now facing extinction as a result. The ploughshare tortoise Astrochelys yniphora, endemic to the Baly Bay National Park of north-western Madagascar, is affected by poaching for the international illegal pet trade. To quantify this, we estimated population trends during 2006–2015, using distance sampling surveys along line transects, and recorded national and international confiscations of trafficked tortoises for 2002–2016. The results suggest the ploughshare tortoise population declined > 50% during this period, to c. 500 adults and subadults in 2014–2015. Prior to 2006 very few tortoises were seized either in Madagascar or internationally but confiscations increased sharply from 2010. Since 2015 poaching has intensified, with field reports suggesting that two of the four subpopulations are extinct, leaving an unknown but almost certainly perilously low number of adult tortoises in the wild. This study has produced the first reliable population estimate of the ploughshare tortoise and shows that the species has declined rapidly because of poaching for the international pet trade. There is an urgent need for increased action both in Madagascar and along international trade routes if the extinction of the ploughshare tortoise in the wild is to be prevented.

Journal ArticleDOI
TL;DR: In this paper, the authors surveyed communities of nocturnal mouse lemurs (Microcebus spp.) in five different sites of northeastern Madagascar, measuring a variety of morphological parameters and assessing reproductive states for 123 individuals belonging to five different lineages.
Abstract: Delimitation of cryptic species is increasingly based on genetic analyses but the integration of distributional, morphological, behavioral, and ecological data offers unique complementary insights into species diversification. We surveyed communities of nocturnal mouse lemurs (Microcebus spp.) in five different sites of northeastern Madagascar, measuring a variety of morphological parameters and assessing reproductive states for 123 individuals belonging to five different lineages. We documented two different non-sister lineages occurring in sympatry in two areas. In both cases, sympatric species pairs consisted of a locally restricted (M. macarthurii or M. sp. #3) and a more widespread lineage (M. mittermeieri or M. lehilahytsara). Estimated Extents of Occurrence (EOO) of these lineages differed remarkably with 560 and 1,500 km2 versus 9,250 and 50,700 km2 , respectively. Morphometric analyses distinguished unambiguously between sympatric species and detected more subtle but significant differences among sister lineages. Tail length and body size were most informative in this regard. Reproductive schedules were highly variable among lineages, most likely impacted by phylogenetic relatedness and environmental variables. While sympatric species pairs differed in their reproductive timing (M. sp. #3/M. lehilahytsara and M. macarthurii/M. mittermeieri), warmer lowland rainforests were associated with a less seasonal reproductive schedule for M. mittermeieri and M. lehilahytsara compared with populations occurring in montane forests. Distributional, morphological, and ecological data gathered in this study support the results of genomic species delimitation analyses conducted in a companion study, which identified one lineage, M. sp. #3, as meriting formal description as a new species. Consequently, a formal species description is included. Worryingly, our data also show that geographically restricted populations of M. sp. #3 and its sister species (M. macarthurii) are at high risk of local and perhaps permanent extinction from both deforestation and habitat fragmentation.

Journal ArticleDOI
TL;DR: Using target enrichment to obtain DNA sequence data from this old specimen, the extrinsic (nomenclatural) hindrances to taxonomic resolution of this complex are resolved and the broad-scale versatility of this ‘barcode fishing’ approach is discussed.
Abstract: Taxonomic progress is often hindered by intrinsic factors, such as morphologically cryptic species that require a broad suite of methods to distinguish, and extrinsic factors, such as uncertainties in the allocation of scientific names to species. These uncertainties can be due to a wide variety of factors, including old and poorly preserved type specimens (which contain only heavily degraded DNA or have lost important diagnostic characters), inappropriately chosen type specimens (e.g. juveniles without diagnostic characters) or poorly documented type specimens (with unprecise, incorrect, or missing locality data). Thanks to modern sequencing technologies it is now possible to overcome many such extrinsic factors by sequencing DNA from name-bearing type specimens of uncertain assignment and assigning these to known genetic lineages. Here, we apply this approach to frogs of the Mantidactylus ambreensis complex, which was recently shown to consist of two genetic lineages supported by concordant differentiation in mitochondrial and nuclear genes. These lineages co-occur on the Montagne dʼAmbre Massif in northern Madagascar but appear to have diverged in allopatry. We use a recently published bait set based on three mitochondrial markers from all known Malagasy frog lineages to capture DNA sequences from the 127-year-old holotype of Mantidactylus ambreensis Mocquard, 1895. With the obtained sequences we are able to assign the name M. ambreensis to the lowland lineage, which is rather widespread in the rainforests of northern Madagascar, leaving the microendemic high-elevation lineage on Montagne d’Ambre in north Madagascar in need of description. We describe this species as Mantidactylus ambony sp. nov., differing from M. ambreensis in call parameters and a smaller body size. Thus, using target enrichment to obtain DNA sequence data from this old specimen, we were able to resolve the extrinsic (nomenclatural) hindrances to taxonomic resolution of this complex. We discuss the broad-scale versatility of this ‘barcode fishing’ approach, which can draw on the enormous success of global DNA barcoding initiatives to quickly and efficiently assign type specimens to lineages.

Journal ArticleDOI
TL;DR: Analysis of ancestral body size indicates that there was a pronounced miniaturization event near the common ancestor of dinosaurs and pterosaurs, and an analysis of body size evolution in dinosaurs and other archosaurs demonstrates that the earliest-diverging members of the group may have been smaller than previously thought.
Abstract: Early members of the dinosaur–pterosaur clade Ornithodira are very rare in the fossil record, obscuring our understanding of the origins of this important group. Here, we describe an early ornithodiran (Kongonaphon kely gen. et sp. nov.) from the Mid-to-Upper Triassic of Madagascar that represents one of the smallest nonavian ornithodirans. Although dinosaurs and gigantism are practically synonymous, an analysis of body size evolution in dinosaurs and other archosaurs in the context of this taxon and related forms demonstrates that the earliest-diverging members of the group may have been smaller than previously thought, and that a profound miniaturization event occurred near the base of the avian stem lineage. In phylogenetic analysis, Kongonaphon is recovered as a member of the Triassic ornithodiran clade Lagerpetidae, expanding the range of this group into Africa and providing data on the craniodental morphology of lagerpetids. The conical teeth of Kongonaphon exhibit pitted microwear consistent with a diet of hard-shelled insects, indicating a shift in trophic ecology to insectivory associated with diminutive body size. Small ancestral body size suggests that the extreme rarity of early ornithodirans in the fossil record owes more to taphonomic artifact than true reflection of the group’s evolutionary history.

Journal ArticleDOI
TL;DR: Preliminary results showed high levels of catechins and other phenolic compounds responsible for antioxidant properties and Concentrations of ferulic acid were particularly high, and further studies would advance exploitation of this plant-food.

Journal ArticleDOI
TL;DR: In this article, the authors present case studies from Kenya, Madagascar, Myanmar and Thailand to show pathways for establishing insect rearing, and the associated economic, resource/ecological and social challenges and opportunities that emerged.

Journal ArticleDOI
TL;DR: Using fragments of the 16S mitochondrial gene and RAG1 nuclear gene from all over the range of the subgenus Mantidactylus to describe its genetic diversity, the populations from North-Western Madagascar were highly distinct on both the mitochondrial and nuclear markers.
Abstract: The subgenus Mantidactylus is a group of frogs endemic to Madagascar, including the largest anuran species on the island. Although these frogs are common and widely distributed, their taxonomy rema...