scispace - formally typeset
Search or ask a question

Showing papers in "Analytical Chemistry in 2021"


Journal ArticleDOI
TL;DR: In this paper, a pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection was presented, where the electrical signal of the pressure sensor could reveal the target concentration.
Abstract: This work demonstrated a pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection. Initially, a sandwich-type immunoreaction for target carcinoembryonic antigen (CEA, as a model analyte) was carried out using the capture antibody (cAb) and platinum nanoparticles-labeled detection antibody (PtNPs-dAb) in a reaction cell. The added hydrogen peroxide (H2O2) could be catalyzed by the PtNPs to generate oxygen (O2). In a sealed chamber, the pressure increased with the overflowing O2. Meanwhile, a skin-inspired flexible pressure sensor with excellent sensing performance was fabricated to monitor the pressure change in real time. Thus, the electrical signal of the pressure sensor could reveal the target concentration. Moreover, a voltage-regulated electrochromic device based on polyaniline (PANI) and tungsten oxide (WO3) was integrated into the platform to provide a visualized readout. According to the electrical signal of the pressure sensor, the electrochromic device would change its color from green to blue, which also revealed the target concentration and could be observed by the naked eye. Under optimal conditions, the biosensor presented a high sensitivity for CEA in a detectable range of 0.2-50 ng/mL. The limit of detection (LOD) was 94 pg/mL. The selectivity, reproducibility, and accuracy were also satisfying. Furthermore, this immunoassay gives a path for developing visualized biosensors in point-of-care settings.

154 citations


Journal ArticleDOI
TL;DR: In this paper, a cotton-tipped electrochemical immunosensor was used for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus antigen.
Abstract: Collection of nasopharyngeal samples using swabs followed by the transfer of the virus into a solution and an RNA extraction step to perform reverse transcription polymerase chain reaction (PCR) is the primary method currently used for the diagnosis of COVID-19. However, the need for several reagents and steps and the high cost of PCR hinder its worldwide implementation to contain the outbreak. Here, we report a cotton-tipped electrochemical immunosensor for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus antigen. Unlike the reported approaches, we integrated the sample collection and detection tools into a single platform by coating screen-printed electrodes with absorbing cotton padding. The immunosensor was fabricated by immobilizing the virus nucleocapsid (N) protein on carbon nanofiber-modified screen-printed electrodes which were functionalized by diazonium electrografting. The detection of the virus antigen was achieved via swabbing followed by competitive assay using a fixed amount of N protein antibody in the solution. A square wave voltammetric technique was used for the detection. The limit of detection for our electrochemical biosensor was 0.8 pg/mL for SARS-CoV-2, indicating very good sensitivity for the sensor. The biosensor did not show significant cross-reactivity with other virus antigens such as influenza A and HCoV, indicating high selectivity of the method. Moreover, the biosensor was successfully applied for the detection of the virus antigen in spiked nasal samples showing excellent recovery percentages. Thus, our electrochemical immunosensor is a promising diagnostic tool for the direct rapid detection of the COVID-19 virus that requires no sample transfer or pretreatment.

143 citations


Journal ArticleDOI
Jiahui Wu1, Qiaoting Yang1, Qian Li1, Haiyin Li1, Feng Li1 
TL;DR: In this paper, a two-dimensional (2D) MnO2 sheets, manganese dioxide nanosheets (MnNSs), with oxidase-like and peroxidaselike properties were adopted as advanced catalysts to develop a novel homogeneous electrochemical sensor for organophosphate pesticides (OPs) using dissolved O2 as a coreactant without the interference of H2O2 and color.
Abstract: Traditional peroxidase-like nanozyme-based sensors suffer from self-decomposition and high toxicity of H2O2, as well as the interference of color from nanozymes themselves and testing samples. In this work, we adopt nanozymes (two-dimension (2D) MnO2 sheets, manganese dioxide nanosheets (MnNS)) with oxidase-like and peroxidase-like properties as advanced catalysts to develop a novel homogeneous electrochemical sensor for organophosphate pesticides (OPs) using dissolved O2 as a coreactant without the interference of H2O2 and color. Owing to the large surface area and unique catalytic activity of MnNS, a large amount of tetramethylbenzidine (TMB) is catalyzed oxidation, leading to a significantly declined differential pulse voltammetry (DPV) current. Obviously, MnNS display an excellent response to thiocholine, deriving from the catalyzing hydrolysis of acetylthiocholine (ATCh) by acetylcholinesterase (AChE), which switches a homogeneous electrochemical OP detection process based on the depressing AChE activity with a limit of detection (LOD) of 0.025 ng mL-1. The as-proposed strategy on using nanozymes with oxidase-like and peroxidase-like properties to develop a homogeneous electrochemical sensor will provide a new pathway for improving the performance of nanozyme-based sensors, and the established MnNS-based homogeneous electrochemical sensor will find more applications for OP residue determination in food samples.

141 citations


Journal ArticleDOI
TL;DR: In this paper, the SARS-CoV-2 spike (S) protein was observed to be O-glycosylated on a threonine (T678) near the furin cleavage site occupied by core-1 and core-2 structures.
Abstract: Covid-19 pandemic outbreak is the reason of the current world health crisis. The development of effective antiviral compounds and vaccines requires detailed descriptive studies of SARS-CoV-2 proteins. The SARS-CoV-2 spike (S) protein mediates virion binding to the human cells through its interaction with the ACE2 cell surface receptor and is one of the prime immunization targets. A functional virion is composed of three S1 and three S2 subunits created by furin cleavage of the spike protein at R682, a polybasic cleavage site that differs from the SARS-CoV spike protein of 2002. By analysis of the protein produced in HEK293 cells, we observe that the spike is O-glycosylated on a threonine (T678) near the furin cleavage site occupied by core-1 and core-2 structures. In addition, we have identified eight additional O-glycopeptides on the spike glycoprotein and confirmed that the spike protein is heavily N-glycosylated. Our recently developed liquid chromatography-mass spectrometry methodology allowed us to identify LacdiNAc structural motifs on all occupied N-glycopeptides and polyLacNAc structures on six glycopeptides of the spike protein. In conclusion, our study substantially expands the current knowledge of the spike protein's glycosylation and enables the investigation of the influence of O-glycosylation on its proteolytic activation.

130 citations


Journal ArticleDOI
TL;DR: In this paper, a metal-organic framework was used to encapsulate AuNCs, which can limit the molecular motion of AuNC, trigger the aggregation-induced emission (AIE) effect, and exhibit a strong fluorescence with a fluorescence lifetime and quantum yield of 6.83 μs and 4.63% respectively.
Abstract: Organophosphorus pesticides (OPs) can inhibit the activity of acetylcholinesterase (AChE) to induce neurological diseases. It is significant to exploit a rapid and sensitive strategy to monitor OPs. Here, a metal-organic framework (MOF) acted as a carrier to encapsulate AuNCs, which can limit the molecular motion of AuNCs, trigger the aggregation-induced emission (AIE) effect, and exhibit a strong fluorescence with a fluorescence lifetime and quantum yield of 6.83 μs and 4.63%, respectively. Then, the marriage of fluorescence and colorimetric signals was realized on the basis of the dual function of the enzymolysis product from AChE and choline oxidase (CHO) on AuNCs@ZIF-8. First, it can decompose ZIF-8 to weaken the restraint on AuNCs, and thus the fluorescence receded. Second, it can be used as a substrate for the peroxidase mimics of the released AuNCs to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) and a visible blue appeared. Thus, on the basis of the inhibition of AChE activity by OPs, a fluorescence-colorimetric dual-signal biosensor was established. In addition, colorimetric paper strips were exploited to realize a visual semiquantitative detection, and a smartphone APP was developed to make the visualization results more precise and realize real-time supervision of pesticide contamination.

115 citations


Journal ArticleDOI
TL;DR: In this paper, a colorimetric readout using DNA-modified gold nanoparticles (AuNPs) was proposed for the detection of SARS-CoV-2.
Abstract: The outbreak of the pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for an urgent unmet need for developing a facial and cost-effective detection method The requirement of well-trained personnel and sophisticated instrument of current primary mean (reverse transcription polymerase chain reaction, RT-PCR) may hinder the practical application worldwide In this regard, a reverse transcription recombinase polymerase amplification (RT-RPA) coupled with CRISPR-Cas12a colorimetric assay is proposed for the SARS-CoV-2 detection The methodology we have described herein utilizes DNA-modified gold nanoparticles (AuNPs) as a universal colorimetric readout and can specifically target ORF1ab and N regions of the SARS-CoV-2 genome After the virus genome is amplified through RT-RPA, the resulting abundant dsDNA will bind and activate Cas12a Under trans-cleavage degradation, the capped DNA substrate will be hydrolyzed gradually from AuNPs, demonstrating a change in the surface plasmon resonance (SPR), which can be facially monitored by UV-vis absorbance spectroscopy and naked eye observation The high amplification efficiency from RT-RPA and Cas12a trans-cleavage process bring the sensitivity of our method to 1 copy of viral genome sequence per test Notably, under the dual variations inspecting from the isothermal amplification and Cas12a activation process, the false positive events from other beta coronavirus members can be effectively avoided and thus significantly improve the specificity Furthermore, the reliability of this colorimetric assay is validated by standard clinical samples from the hospital laboratory department Through integration of the inherently high sensitivity and specificity from an RPA-coupled Cas12a system with the intrinsic simplicity of AuNP-based colorimetric assay, our method increases the practical testing availability of SARS-CoV-2

113 citations


Journal ArticleDOI
TL;DR: OpenSpecy as mentioned in this paper is a free open source software for spectral analysis of microplastic pollution, which allows users to upload and process their spectra using smoothing (Savitzky-Golay filter) and polynomial baseline correction techniques.
Abstract: Microplastic pollution research has suffered from inadequate data and tools for spectral (Raman and infrared) classification. Spectral matching tools often are not accurate for microplastics identification and are cost-prohibitive. Lack of accuracy stems from the diversity of microplastic pollutants, which are not represented in spectral libraries. Here, we propose a viable software solution: Open Specy. Open Specy is on the web (www.openspecy.org) and in an R package. Open Specy is free and allows users to view, process, identify, and share their spectra to a community library. Users can upload and process their spectra using smoothing (Savitzky-Golay filter) and polynomial baseline correction techniques (IModPolyFit). The processed spectrum can be downloaded to be used in other applications or identified using an onboard reference library and correlation-based matching criteria. Open Specy's data sharing and session log features ensure reproducible results. Open Specy houses a growing library of reference spectra, which increasingly represents the diversity of microplastics as a contaminant suite. We compared the functionality and accuracy of Open Specy for microplastic identification to commonly used spectral analysis software. We found that Open Specy was the only open source software and the only software with a community library, and Open Specy had comparable accuracy to popular software (OMNIC Picta and KnowItAll). Future developments will enhance spectral identification accuracy as the reference library and functionality grows through community-contributed spectra and community-developed code. Open Specy can also be used for applications beyond microplastic analysis. Open Specy's source code is open source (CC-BY-4.0, attribution only) (https://github.com/wincowgerDEV/OpenSpecy).

113 citations


Journal ArticleDOI
TL;DR: In this paper, a light-up CRISPR-Cas13 transcription amplification method was used to detect SARS-CoV-2 and its mutated variants, and the proposed RNA virus assays are promising for point-of-care monitoring of SARS and its risking variants.
Abstract: The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global health emergency, and its gene mutation and evolution further posed uncertainty of epidemic risk. Herein, we reported a light-up CRISPR-Cas13 transcription amplification method, which enables the detection of SARS-CoV-2 and its mutated variants. Sequence specificity was ensured by both the ligation process and Cas13a/crRNA recognition, allowing us to identify viral RNA mutation. Light-up RNA aptamer allows sensitive output of amplification signals via target-activated ribonuclease activity of CRISPR-Cas13a. The RNA virus assay has been designed to detect coronavirus, SARS-CoV-2, Middle East respiratory syndrome (MERS), and SARS, as well as the influenza viruses such as, H1N1, H7N9, and H9N2. It was accommodated to sense as low as 82 copies of SARS-CoV-2. Particularly, it allowed us to strictly discriminate key mutation of the SARS-CoV-2 variant, D614G, which may induce higher epidemic and pathogenetic risk. The proposed RNA virus assays are promising for point-of-care monitoring of SARS-CoV-2 and its risking variants.

109 citations



Journal ArticleDOI
TL;DR: In this paper, the authors summarized recent works in paper-based potentiometry and voltammetry in heavy metal determination, including the interactions of paper substrates with heavy metals, influence on the sensing response, and the effect of paper sensing response.
Abstract: This Feature summarizes recent works in paper-based potentiometry and voltammetry in heavy metal determination. Interactions of paper substrates with heavy metals, influence on the sensing response...

104 citations


Journal ArticleDOI
TL;DR: In this paper, a self-powered photoelectrochemical (PEC) sensing platform was developed for rapid detection of prostate-specific antigen (PSA) as a model disease-related protein by integrating a selfpowered photoelectric signal output system catalyzed with chemiluminescence-functionalized Au nanoparticles (AuNPs) and a phosphomolybdic acid (PMA)-based photochromic visualization platform.
Abstract: Early diagnosis of cancers relies on the sensitive detection of specific biomarkers, but most of the current testing methods are inaccessible to home healthcare due to cumbersome steps, prolonged testing time, and utilization of toxic and hazardous substances. Herein, we developed a portable self-powered photoelectrochemical (PEC) sensing platform for rapid detection of prostate-specific antigen (PSA, as a model disease-related protein) by integrating a self-powered photoelectric signal output system catalyzed with chemiluminescence-functionalized Au nanoparticles (AuNPs) and a phosphomolybdic acid (PMA)-based photochromic visualization platform. TiO2-g-C3N4-PMA photosensitive materials were first synthesized and functionalized on a sensor chip. The sensor consisted of filter paper modified with a photocatalytic material and a regional laser-etched FTO electrode as an alternative to a conventional PEC sensor with a glass-based electrode. The targeting system involved a monoclonal anti-PSA capture antibody-functionalized Fe3O4 magnetic bead (mAb1-MB) and a polyclonal anti-PSA antibody (pAb2)-N-(4-aminobutyl)-N-ethylisoluminol-AuNP (ABEI-AuNP). Based on the signal intensity of the chemiluminescent system, the photochromic device color changed from light yellow to heteropoly blue through the PMA photoelectric materials integrated into the electrode for visualization of the signal output. In addition, the electrical signal in the PEC system was amplified by a sandwich-type capacitor and readout on a handheld digital multimeter. Under optimum conditions, the sensor exhibited high sensitivity relative to PSA in the range of 0.01-50 ng mL-1 with a low detection limit of 6.25 pg mL-1. The flow-through chemiluminescence reactor with a semiautomatic injection device and magnetic separation was avoid of unstable light source intensity inherent in the chemiluminescence process. Therefore, our strategy provides a new horizon for point-of-care analysis and rapid cost-effective clinical diagnosis.

Journal ArticleDOI
TL;DR: In this article, a dual-aptamer recognition system for precisely isolating and quantifying tumor exosomes from the complex biological environment based on hyperbranched DNA superstructure-facilitated signal amplification and ratiometric dual-signal strategies was presented.
Abstract: Tumor exosomes are promising biomarkers for early cancer diagnosis in a noninvasive manner. However, precise capture and direct analysis of tumor-specific exosomes in complex biological samples are still challenging. Herein, we present a highly efficient dual-aptamer recognition system for precisely isolating and quantifying tumor exosomes from the complex biological environment based on hyperbranched DNA superstructure-facilitated signal amplification and ratiometric dual-signal strategies. When tumor exosomes were captured by the dual-aptamer recognition system, the cholesterol-modified DNA probe was anchored on the surface of the exosomes, activating DNA tetrahedron-based hyperbranched hybridization chain reaction to generate a sandwich complex. Then, the sandwich complex could bind a large number of Ru(NH3)63+ (Ru(III)), leading to a small amount of unbound Ru(III) left in the supernatant after magnetic separation. Hence, the redox reaction between Ru(II) and [Fe(CN)6]3- (Fe(III)) was significantly prevented, causing an obviously enhanced IFe(III)/IRu(III) value. Consequently, highly sensitive detection of tumor exosomes was achieved. The developed approach successfully realized direct isolation and analysis of tumor exosomes in complex sample media and human serum samples as well. More significantly, this ratiometric dual-signal mode and immobilization-free strategy effectively circumvented the systematic errors caused by external factors and the tedious probe immobilization processes, thus displaying the excellent performances of high reliability, improved accuracy, and easy manipulation. Overall, this approach is expected to offer novel ways for nondestructive early cancer diagnosis.

Journal ArticleDOI
TL;DR: In this article, a near-infrared mitochondria-targetable fluorescence probe MI-H2S was developed for H2S detection in living systems, which can be applied as an effective probe for the visualization and study of H 2S in mitochondria and in vivo.
Abstract: To elucidate the complex role of biological H2S and study the mitochondrial damage and some related diseases, effective methods for visualization of H2S in mitochondria and in vivo are urgently needed. In this contribution, a novel near-infrared mitochondria-targetable fluorescence probe MI-H2S for H2S detection was developed. MI-H2S shows rapid detection ability for H2S in pure aqueous solution and outputs a highly selective and sensitive fluorescence-on signal at 663 nm with a large Stokes shift of 141 nm. Bioimaging experiments revealed that the probe has good mitochondrial-targeting ability and high-contrast imaging ability for detecting H2S in living systems. The probe also showed great potential in the detection of H2S during inflammation. All of the results demonstrate that MI-H2S can be applied as an effective probe for the visualization and study of H2S in mitochondria and in vivo.

Journal ArticleDOI
Xiaojuan Liu1, Xin Gao1, Limin Yang1, Yuecan Zhao1, Feng Li1 
TL;DR: In this article, a simple and cost-efficient electrochemical biosensor was developed by combining a metal-organic framework (MOF)-functionalized paper and a screen-printed electrode (SPE) for portable, ultra-sensitive, and quantitative determination of cancer-derived exosomes.
Abstract: The exosome has emerged as a promising noninvasive biomarker for the early diagnosis of cancer. Therefore, it is highly desirable to develop simple, inexpensive, and user-friendly biosensors for convenient, sensitive, and quantitative exosome assay. Herein, we developed a simple and cost-efficient electrochemical biosensor by combining a metal-organic framework (MOF)-functionalized paper and a screen-printed electrode (SPE) for portable, ultrasensitive, and quantitative determination of cancer-derived exosomes. In principle, the biosensor relied on recognition of the exosome by Zr-MOFs and aptamer to initiate the hybridization chain reaction (HCR) and the formation of DNAzyme for signal amplification. Benefiting from the high signal amplification ability of HCR, the label-free paper-based biosensor is capable of ultrasensitive exosome assay with a detection limit down to 5 × 103 particles/mL, which is superior to that of most reported methods. Moreover, the proposed paper-based biosensor possessed the advantages of low cost, simple operation, and high sensitivity, making it affordable and deliverable for point-of-care (POC) diagnosis in resource-limited settings.

Journal ArticleDOI
Abstract: Sensitivity, selectivity, visible detection, and rapid response are the main concerns for an analytical method. Herein, we reported a metal-organic framework (MOF)-based ratiometric fluorescence detection strategy for hypochlorous acid (HClO). The MOF was prepared with dual ligands, 2-aminoterephthalic acid (BDC-NH2) and dipicolinic acid (DPA) and Eu3+ ions as a metal node, denoted as Eu-BDC-NH2/DPA. The dual-ligand strategy realized the dual emission for ratiometric sensing and visual detection, adjusted the size and morphology of MOFs to obtain a good dispersion for a rapid response, and provided an amino group for the special recognition of HClO. Thus, the MOF exhibited a dual emission derived from BDC-NH2 and Eu3+ ions at 433 and 621 nm, respectively, under a single excitation at 270 nm. A hydrogen bond forms between an -NH2 group and HClO to weaken the blue fluorescence at 433 nm, while the antenna effect emission from Eu3+ ions kept stable, so ratiometric sensing was realized with an easy-to-differentiate color change for visible detection. The ratiometric sensing showed a self-calibration effect and reduced the background. Thus, the high sensitivity, visual detection, low detection limit (37 nM), and short response time (within 20 s) for the detection of HClO were realized with the MOF as a probe. The analysis of real samples demonstrated the practical application of the MOF for HClO. The introduction of mixed ligands is an effective strategy to regulate the emission behaviors of MOFs for the improved analytical performance.

Journal ArticleDOI
TL;DR: In this article, a laser-cut graphene (LSG)-based electrochemical sensing scheme for coronavirus disease 2019 (COVID-19) diagnosis combined with three-dimensional (3D) gold nanostructures was presented.
Abstract: The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has revealed the urgent need for accurate, rapid, and affordable diagnostic tests for epidemic understanding and management by monitoring the population worldwide. Though current diagnostic methods including real-time polymerase chain reaction (RT-PCR) provide sensitive detection of SARS-CoV-2, they require relatively long processing time, equipped laboratory facilities, and highly skilled personnel. Laser-scribed graphene (LSG)-based biosensing platforms have gained enormous attention as miniaturized electrochemical systems, holding an enormous potential as point-of-care (POC) diagnostic tools. We describe here a miniaturized LSG-based electrochemical sensing scheme for coronavirus disease 2019 (COVID-19) diagnosis combined with three-dimensional (3D) gold nanostructures. This electrode was modified with the SARS-CoV-2 spike protein antibody following the proper surface modifications proved by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) characterizations as well as electrochemical techniques. The system was integrated into a handheld POC detection system operated using a custom smartphone application, providing a user-friendly diagnostic platform due to its ease of operation, accessibility, and systematic data management. The analytical features of the electrochemical immunoassay were evaluated using the standard solution of S-protein in the range of 5.0-500 ng/mL with a detection limit of 2.9 ng/mL. A clinical study was carried out on 23 patient blood serum samples with successful COVID-19 diagnosis, compared to the commercial RT-PCR, antibody blood test, and enzyme-linked immunosorbent assay (ELISA) IgG and IgA test results. Our test provides faster results compared to commercial diagnostic tools and offers a promising alternative solution for next-generation POC applications.

Journal ArticleDOI
TL;DR: In this article, an automated high-throughput metabolite array technology that can rapidly and quantitatively determine 324 metabolites including fatty acids, amino acids, organic acids, carbohydrates, and bile acids is reported.
Abstract: The application of metabolomics in translational research suffers from several technological bottlenecks, such as data reproducibility issues and the lack of standardization of sample profiling procedures. Here, we report an automated high-throughput metabolite array technology that can rapidly and quantitatively determine 324 metabolites including fatty acids, amino acids, organic acids, carbohydrates, and bile acids. Metabolite identification and quantification is achieved using the Targeted Metabolome Batch Quantification (TMBQ) software, the first cross-vendor data processing pipeline. A test of this metabolite array was performed by analyzing serum samples from patients with chronic liver disease (N = 1234). With high detection efficiency and sensitivity in serum, urine, feces, cell lysates, and liver tissue samples and suitable for different mass spectrometry systems, this metabolite array technology holds great potential for biomarker discovery and high throughput clinical testing. Additionally, data generated from such standardized procedures can be used to generate a clinical metabolomics database suitable for precision medicine in next-generation healthcare.

Journal ArticleDOI
TL;DR: CFM-ID as discussed by the authors is a rule-based approach to predict ESI-MS/MS spectra from compounds by learning parameters from features based on the molecular topology and adding a new approach to ring cleavage that models such cleavage as a sequence of simple chemical bond dissociations.
Abstract: In the field of metabolomics, mass spectrometry (MS) is the method most commonly used for identifying and annotating metabolites. As this typically involves matching a given MS spectrum against an experimentally acquired reference spectral library, this approach is limited by the coverage and size of such libraries (which typically number in the thousands). These experimental libraries can be greatly extended by predicting the MS spectra of known chemical structures (which number in the millions) to create computational reference spectral libraries. To facilitate the generation of predicted spectral reference libraries, we developed CFM-ID, a computer program that can accurately predict ESI-MS/MS spectrum for a given compound structure. CFM-ID is one of the best-performing methods for compound-to-mass-spectrum prediction and also one of the top tools for in silico mass-spectrum-to-compound identification. This work improves CFM-ID's ability to predict ESI-MS/MS spectra from compounds by (1) learning parameters from features based on the molecular topology, (2) adding a new approach to ring cleavage that models such cleavage as a sequence of simple chemical bond dissociations, and (3) expanding its hand-written rule-based predictor to cover more chemical classes, including acylcarnitines, acylcholines, flavonols, flavones, flavanones, and flavonoid glycosides. We demonstrate that this new version of CFM-ID (version 4.0) is significantly more accurate than previous CFM-ID versions in terms of both EI-MS/MS spectral prediction and compound identification. CFM-ID 4.0 is available at http://cfmid4.wishartlab.com/ as a web server and docker images can be downloaded at https://hub.docker.com/r/wishartlab/cfmid.

Journal ArticleDOI
TL;DR: In this paper, an antifouling electrochemical biosensor was constructed based on electropolymerized polyaniline (PANI) nanowires and newly designed peptides for the detection of the COVID-19 N-gene.
Abstract: Biofouling caused by the accumulation of biomolecules on sensing surfaces is one of the major problems and challenges to realize the practical application of electrochemical biosensors, and an effective way to counter this problem is the construction of antifouling biosensors. Herein, an antifouling electrochemical biosensor was constructed based on electropolymerized polyaniline (PANI) nanowires and newly designed peptides for the detection of the COVID-19 N-gene. The inverted Y-shaped peptides were designed with excellent antifouling properties and two anchoring branches, and their antifouling performances against proteins and complex biological media were investigated using different approaches. Based on the biotin-streptavidin affinity system, biotin-labeled probes specific to the N-gene (nucleocapsid phosphoprotein) of COVID-19 were immobilized onto the peptide-coated PANI nanowires, forming a highly sensitive and antifouling electrochemical sensing interface for the detection of COVID-19 nucleic acid. The antifouling genosensor demonstrated a wide linear range (10-14 to 10-9 M) and an exceptional low detection limit (3.5 fM). The remarkable performance of the genosensor derives from the high peak current of PANI, which is chosen as the sensing signal, and the extraordinary antifouling properties of designed peptides, which guarantee accurate detection in complex systems. These crucial features represent essential elements for future rapid and decentralized clinical testing.

Journal ArticleDOI
TL;DR: In this paper, a single-atom ruthenium biomimetic enzyme (Ru-Ala-C3N4) is prepared by dispersing Ru atoms on a carbon nitride support for the simultaneous electrochemical detection of dopamine (DA) and uric acid (UA), which are coexisting important biological molecules involving in many physiological and pathological aspects.
Abstract: Single-atom catalysts have attracted numerous attention due to the high utilization of metallic atoms, abundant active sites, and highly catalytic activities. Herein, a single-atom ruthenium biomimetic enzyme (Ru-Ala-C3N4) is prepared by dispersing Ru atoms on a carbon nitride support for the simultaneous electrochemical detection of dopamine (DA) and uric acid (UA), which are coexisting important biological molecules involving in many physiological and pathological aspects. The morphology and elemental states of the single-atom Ru catalyst are studied by transmission electron microscopy, energy dispersive X-ray elemental mapping, high-angle annular dark field-scanning transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. Results show that Ru atoms atomically disperse throughout the C3N4 support by Ru-N chemical bonds. The electrochemical characterizations indicate that the Ru-Ala-C3N4 biosensor can simultaneously detect the oxidation of DA and UA with a separation of peak potential of 180 mV with high sensitivity and excellent selectivity. The calibration curves for DA and UA range from 0.06 to 490 and 0.5 to 2135 μM with detection limits of 20 and 170 nM, respectively. Moreover, the biosensor was applied to detect DA and UA in real biological serum samples using the standard addition method with satisfactory results.

Journal ArticleDOI
TL;DR: In this paper, a DCM-ONOO was used to detect the changes of endogenous ONOO- with excellent temporal and spatial resolution in living cells and in rat epileptic brain.
Abstract: Epilepsy is a chronic neurodegenerative disease that has seriously threatened human health. Accumulating evidence reveals that the pathological progression of epilepsy is closely related to peroxynitrite (ONOO-). Unfortunately, understanding the physiological roles of ONOO- in epilepsy is still challenging due to the lack of powerful imaging probes for the determination of the level of fluctuations of ONOO- in the epileptic brain. Herein, a near-infrared (NIR) two-photon (TP) fluorescent probe [dicyanomethylene-4H-pyran (DCM)-ONOO] is presented to trace ONOO- in living cells and in kainate (KA)-induced rat epilepsy models with satisfactory sensitivity and selectivity. The probe is composed of a NIR TP DCM fluorophore and a recognition moiety diphenylphosphinamide. The phosphoramide bond of the probe is interrupted after reacting with ONOO- for 10 min, and then, the released amino groups emit strong fluorescence due to the restoration of the intramolecular charge transfer process. The probe can effectively detect the changes of endogenous ONOO- with excellent temporal and spatial resolution in living cells and in rat epileptic brain. The imaging results demonstrate that the increasing level of ONOO- is closely associated with epilepsy and severe neuronal damage in the brain under KA stimulation. In addition, the low-dose resveratrol can effectively inhibit ONOO- overexpression and further relieve neuronal damage. With the assistance of TP fluorescence imaging in the epileptic brain tissue, we hypothesize that the abnormal levels of ONOO- may serve as a potential indicator for the diagnosis of epilepsy. The TP fluorescence imaging based on DCM-ONOO provides a great potential approach for understanding the epilepsy pathology and diagnosis.

Journal ArticleDOI
TL;DR: This work states that improving Coverage, Selectivity, and Reliability in Metabolomics and Lipidomics is a major goal and should be focused on in the coming academic year.
Abstract: ■ CONTENTS Established Concepts of Quantification in Metabolomics/Lipidomics 521 Recommended Absolute Quantification Approaches 521 Stable Isotope Labeling 522 Enrichment Degree and Isotopologue Distribution 522 Suite of In Vivo Synthesized Isotopically Labeled Materials 523 Applications of Stable Isotope Labeled Biomass 523 Credentialing: Isotopically Labeled Biomass for Identification 523 Isotopically Labeled Biomass for Validated Isotopologue Distribution Elucidations 524 Isotopically Labeled Biomass for Quantification 524 Harmonization and Reference Materials 526 Reference Materials and Interlaboratory Comparisons 526 Community-Based Guidelines in Metabolomics 526 Quality Control and Benchmarking 527 Nontargeted Data AnalysisIncreasing Quality by Multiple Lines of Evidence 527 Data Preprocessing 527 Elimination of Redundancies and Noise from Feature Tables 528 The Annotation Task 528 Annotation in the Field of Lipidomics 529 Retention Time and Cross Section as Orthogonal Parameter in Nontargeted Analysis 529 Retention Time for Annotation 529 Collision Cross Section Value for Compound Annotation 530 Navigating the Conflicting Goals of Metabolome Coverage and Throughput 530 Sample Preparation 530 Direct Analysis in Metabolomics and Lipidomics 531 Flow Injection-MS 531 Ultimate Throughput−Duty Cycles of Seconds Per Sample 531 ChromatographyKey Steps Toward Coverage and Throughput 532 Miniaturization of Liquid Chromatography 532 Multidimensional Chromatography 533 Dual/Parallel Chromatography 534 MS Platforms and Data Acquisition Strategies Improving Coverage, Selectivity, and Reliability 534 Toward MS-Based Multi-omics 534 Multi-omics Sample Preparation Strategies 534 Multiplatform Analysis Strategies for Metabolomics and Lipidomics 535 Merging Metabolomics and Lipidomics 536 Network Analysis and Visualization of Multiomics Workflows 536 Conclusions 538 Author Information 538 Corresponding Author 538 Authors 538 Notes 538 Biographies 538 Acknowledgments 539 References 539

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a robust LD-specific and polarity-sensitive fluorescent probe (LD-TTP), which consists of a triphenylamine segment as an electron-donor group and a pyridinium as a electron-acceptor moiety, forming a typical D-π-A molecular configuration.
Abstract: Elucidating the intrinsic relationship between diseases and lipid droplet (LD) polarity remains a great challenge owing to the lack of the research on multiple disease models. Until now, the visualization of abnormal LD polarity in models of inflammation and clinical cancer patient samples has not been achieved. To meet the urgent challenge, we facilely synthesized a robust LD-specific and polarity-sensitive fluorescent probe (LD-TTP), which consists of a triphenylamine segment as an electron-donor group (D) and a pyridinium as an electron-acceptor moiety (A), forming a typical D-π-A molecular configuration. Owing to the unique intramolecular charge transfer effect, LD-TTP exhibits high sensitivity to polarity change in the linear range from Δf = 0.258 to 0.312, with over 278-fold fluorescence enhancement. Moreover, we revealed that LD-TTP possessed satisfactory ability for sensitively monitoring LD-polarity changes in living cells. Using LD-TTP, we first demonstrated the detection of LD-polarity changes in fatty liver tissues and inflammatory living mice via confocal laser scanning fluorescence imaging. Surprisingly, the visualization of LD polarity has been achieved not only at the cellular levels and living organs but also in surgical specimens from cancer patients, thus holding great potential in the clinical diagnosis of human cancer. All these features render LD-TTP an effective tool for medical diagnosis of LD polarity-related diseases.

Journal ArticleDOI
TL;DR: In this paper, a novel near-infrared (NIR) fluorescent probe named QX-B was designed and synthesized to detect H2O2 in diabetic mice.
Abstract: Diabetes is one of the metabolic diseases marked by hyperglycemia and is often accompanied by the occurrence of some complications. As a biomarker of oxidative stress, hydrogen peroxide (H2O2) has close association with the occurrence and development of diabetes and its complications. Unfortunately, there is no fluorescent probe reported for imaging H2O2 in diabetic mice. Here, a novel near-infrared (NIR) fluorescent probe named QX-B was designed and synthesized to detect H2O2. For the probe, the quinolinium-xanthene dye is used as the fluorophore and borate ester is chosen as the response group. After the addition of H2O2, a strong NIR fluorescence signal at 772 nm is observed. The probe not only shows high sensitivity with 10-fold enhancement but also displays excellent selectivity to H2O2 over other possible interfering species. In the meantime, the possible response mechanism of QX-B toward H2O2 was proposed and verified by the high-performance liquid chromatography (HPLC) experiment, mass spectra (MS) experiment, and density functional theory (DFT) calculation. Furthermore, based on the low cell cytotoxicity of QX-B, it has been applied in imaging exogenous and endogenous H2O2 in HeLa cells, HCT116 cells, 4T1 cells, and zebrafish successfully. More importantly, inspired by the performance of NIR fluorescence, QX-B has been used in monitoring H2O2 in diabetic mice for the first time. This provides very important information for the diagnosis and treatment of diabetes and its complications.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper combined three-dimensional (3D) popcorn-like gold nanofilms as novel surface-enhanced Raman scattering (SERS)-electrochemistry active substrates with toehold-mediated strand displacement reactions (TSDRs) to construct a DNA molecular machine for dual-mode detection of miRNA.
Abstract: MicroRNA (miRNA) has emerged as one of the ideal target biomarker analytes for cancer detection because its abnormal expression is closely related to the occurrence of many cancers In this work, we combined three-dimensional (3D) popcorn-like gold nanofilms as novel surface-enhanced Raman scattering (SERS)-electrochemistry active substrates with toehold-mediated strand displacement reactions (TSDRs) to construct a DNA molecular machine for SERS-electrochemistry dual-mode detection of miRNA 3D popcorn-like spatial structures generated more active "hot spots" and thus enhanced the sensitivity of SERS and electrochemical signals Besides, the TSDRs showed high sequence-dependence and high specificity The addition of target miRNA will trigger the molecular machine to perform two TSDRs in the presence of signal DNA strands modified by R6G (R6G-DNA), thus achieving an enzyme-free amplification detection of miRNA with a low limit of detection of 012 fM (for the SERS method) and 22 fM (for the electrochemical method) This biosensor can also serve as a universally amplified and sensitive detection platform for monitoring different biomarkers, such as cancer-related DNA, messenger RNA, or miRNA molecules, with high selectivity by changing the corresponding probe sequence

Journal ArticleDOI
TL;DR: In this article, a one-pot direct reverse transcript loop-mediated isothermal amplification (RT-LAMP) was used to detect SARS-CoV-2 based on a lateral flow assay in clinical samples.
Abstract: Rapid tests for pathogen identification and spread assessment are critical for infectious disease control and prevention. The control of viral outbreaks requires a nucleic acid diagnostic test that is sensitive and simple and delivers fast and reliable results. Here, we report a one-pot direct reverse transcript loop-mediated isothermal amplification (RT-LAMP) assay of SARS-CoV-2 based on a lateral flow assay in clinical samples. The entire contiguous sample-to-answer workflow takes less than 40 min from a clinical swab sample to a diagnostic result without professional instruments and technicians. The assay achieved an accuracy of 100% in 12 synthetic and 12 clinical samples compared to the data from PCR-based assays. We anticipate that our method will provide a universal platform for rapid and point-of-care detection of emerging infectious diseases.

Journal ArticleDOI
TL;DR: In this paper, an electrochemical detector of a functional two-dimensional (2D) metal-organic framework (MOF) nanozyme was developed for the sensitive detection of pathogenic Staphylococcus aureus.
Abstract: Bacterial infection is one of the major causes of human death worldwide. To prevent bacterial infectious diseases from spreading, it is of critical importance to develop convenient, ultrasensitive, and cost-efficient methods for bacteria detection. Here, an electrochemical detector of a functional two-dimensional (2D) metal-organic framework (MOF) nanozyme was developed for the sensitive detection of pathogenic Staphylococcus aureus. A dual recognition strategy consisting of vancomycin and anti-S. aureus antibody was proposed to specifically anchor S. aureus. The 2D MOFs with excellent peroxidase-like activity can efficiently catalyze o-phenylenediamine to 2,2-diaminoazobenzene, which is an ideal electrochemical signal readout for monitoring the bacteria concentration. Under optimal conditions, the present bioassay provides a wide detection range of 10-7.5 × 107 colony-forming units CFU/mL with a detection limit of 6 CFU/mL, which is better than most of the previous reports. In addition, the established electrochemical sensor can selectively and accurately identify S. aureus in the presence of other bacteria. The present work provides a new pathway for sensitive and selective detection of S. aureus and presents a promising potential in the realm of clinical diagnosis.

Journal ArticleDOI
TL;DR: In this paper, a CRISPR/Cas12a-assisted sequence-specific detection of loop-mediated isothermal amplification (LAMP) products was proposed to eliminate the effect of non-specific amplification from primer dimers and spurious amplicons.
Abstract: Loop-mediated isothermal amplification (LAMP) has been increasingly applied in nucleic acid detection for clinical diagnosis and monitoring pathogenic microorganisms due to its isothermal nature and high sensitivity However, the false-positive signal resulting from the non-specific amplification and the complexity of primer design are still technically challenging for wide applications In this paper, we developed the CRISPR/Cas12a-assisted sequence-specific detection of LAMP products to eliminate the effect of non-specific amplification from primer dimers and spurious amplicons Moreover, by designing a pair of target-specific stem-loop DNA probes, we greatly simplified the primer design for LAMP The DNA probes could be ligated to form a double-stem-loop DNA template by the detected target, which initiated LAMP reaction and achieved one-nucleotide resolution due to the highly specific ligase reaction Using microRNAs (miRNAs) as the model targets, the CRISPR/Cas12a-assisted ligation-initiated loop-mediated isothermal amplification (CAL-LAMP) can sensitively detect as low as 01 fM miRNAs with high specificity

Journal ArticleDOI
TL;DR: In this article, a rapid point-of-need detection method was developed to detect the RNA-dependent RNA polymerase (RdRP), envelope protein (E), and nucleocapsid protein (N) genes of SARS-CoV-2 based on the reverse transcription recombinase polymerase amplification (RT-RPA) assay.
Abstract: In March 2020, the SARS-CoV-2 virus outbreak was declared as a world pandemic by the World Health Organization (WHO). The only measures for controlling the outbreak are testing and isolation of infected cases. Molecular real-time polymerase chain reaction (PCR) assays are very sensitive but require highly equipped laboratories and well-trained personnel. In this study, a rapid point-of-need detection method was developed to detect the RNA-dependent RNA polymerase (RdRP), envelope protein (E), and nucleocapsid protein (N) genes of SARS-CoV-2 based on the reverse transcription recombinase polymerase amplification (RT-RPA) assay. RdRP, E, and N RT-RPA assays required approximately 15 min to amplify 2, 15, and 15 RNA molecules of molecular standard/reaction, respectively. RdRP and E RT-RPA assays detected SARS-CoV-1 and 2 genomic RNA, whereas the N RT-RPA assay identified only SARS-CoV-2 RNA. All established assays did not cross-react with nucleic acids of other respiratory pathogens. The RT-RPA assay's clinical sensitivity and specificity in comparison to real-time RT-PCR (n = 36) were 94 and 100% for RdRP; 65 and 77% for E; and 83 and 94% for the N RT-RPA assay. The assays were deployed to the field, where the RdRP RT-RPA assays confirmed to produce the most accurate results in three different laboratories in Africa (n = 89). The RPA assays were run in a mobile suitcase laboratory to facilitate the deployment at point of need. The assays can contribute to speed up the control measures as well as assist in the detection of COVID-19 cases in low-resource settings.

Journal ArticleDOI
TL;DR: In this article, a self-powered biosensing platform is developed, which effectively integrates an enzymatic bio-fuel cell (EBFC)-based selfpowered biosensor with a matching capacitor for miRNA detection.
Abstract: The detection of microRNA (miRNA) in human serum has great significance for cancer prevention. Herein, a novel self-powered biosensing platform is developed, which effectively integrates an enzymatic biofuel cell (EBFC)-based self-powered biosensor with a matching capacitor for miRNA detection. A catalytic hairpin assembly and hybrid chain reaction are used to improve the analytical performance of EBFC. Furthermore, the matching capacitor is selected as an auxiliary signal amplifying device, and graphdiyne is applied as substrate material for EBFC. The results confirm that the developed method obviously increases the output current of EBFC, and the sensitivity can reach 2.75 μA/pM, which is 786% of pure EBFC. MiRNA can be detected in an expanded linear range of 0.1-100000 fM with a detection limit of 0.034 fM (S/N = 3). It can offer a selective and sensitive platform for nucleotide sequence detection with great potential in clinical diagnostics.