scispace - formally typeset
Search or ask a question

Showing papers in "Biology and Fertility of Soils in 2005"


Journal ArticleDOI
TL;DR: A combination of stable isotope and acetylene (0.01% v/v) inhibition techniques were used for the first time to determine N2O production during denitrification, autotrophic nitrification and heterotrophic Nitrification in a silt loam soil at contrasting (20-70%) water-filled pore space (WFPS) as mentioned in this paper.
Abstract: A combination of stable isotope and acetylene (0.01% v/v) inhibition techniques were used for the first time to determine N2O production during denitrification, autotrophic nitrification and heterotrophic nitrification in a fertilised (200 kg N ha−1) silt loam soil at contrasting (20–70%) water-filled pore space (WFPS). 15N-N2O emissions from 14NH415NO3 replicates were attributed to denitrification and 15N-N2O from 15NH415NO3 minus that from 14NH415NO3 replicates was attributed to nitrification and heterotrophic nitrification in the presence of acetylene, as there was no dissimilatory nitrate reduction to ammonium or immobilisation and remineralisation of 15N-NO3−. All of the N2O emitted at 70% WFPS (31.6 mg N2O-N m−2 over 24 days; 1.12 μg N2O-N g dry soil−1; 0.16% of N applied) was produced during denitrification, but at 35–60% WFPS nitrification was the main process producing N2O, accounting for 81% of 15N-N2O emitted at 60% WFPS, and 7.9 μg 15N-N2O m−2 (0.28 ng 15N-N2O g dry soil−1) was estimated to be emitted over 7 days during heterotrophic nitrification in the 50% WFPS treatment and accounted for 20% of 15N-N2O from this treatment. Denitrification was the predominant N2O-producing process at 20% WFPS (2.6 μg 15N-N2O m−2 over 7 days; 0.09 ng 15N-N2O g dry soil−1; 85% of 15N-N2O from this treatment) and may have been due to the occurrence of aerobic denitrification at this WFPS. Our results demonstrate the usefulness of a combined stable isotope and acetylene approach to quantify N2O emissions from different processes and to show that several processes may contribute to N2O emission from agricultural soils depending on soil WFPS.

1,031 citations


Journal ArticleDOI
TL;DR: A plant-growth-promoting isolate of the yeast Williopsis saturnus endophytic in maize roots was found to be capable of producing indole-3-acetic acid (IAA) and indole -3-pyruvic acid (IPYA) in vitro in a chemically defined medium, and the first report of the production of auxins by yeasts endophysis in plant roots.
Abstract: A plant-growth-promoting isolate of the yeast Williopsis saturnus endophytic in maize roots was found to be capable of producing indole-3-acetic acid (IAA) and indole-3-pyruvic acid (IPYA) in vitro in a chemically defined medium. It was selected from among 24 endophytic yeasts isolated from surface-disinfested maize roots and evaluated for their potential to produce IAA and to promote maize growth under gnotobiotic and glasshouse conditions. The addition of l-tryptophan (L-TRP), as a precursor for auxins, to the medium inoculated with W. saturnus enhanced the production of IAA and IPYA severalfold compared to an L-TRP-non-amended medium. The introduction of W. saturnus to maize seedlings by the pruned-root dip method significantly (P<0.05) enhanced the growth of maize plants grown under gnotobiotic and glasshouse conditions in a soil amended with or without L-TRP. This was evident from the increases in the dry weights and lengths of roots and shoots and also in the significant (P<0.05) increases in the levels of in planta IAA and IPYA compared with control plants grown in L-TRP-amended or non-amended soil. The plant growth promotion by W. saturnus was most pronounced in the presence of L-TRP as soil amendment compared to seedlings inoculated with W. saturnus and grown in soil not amended with L-TRP. In the glasshouse test, W. saturnus was recovered from inside the root at all samplings, up to 8 weeks after inoculation, indicating that the roots of healthy maize may be a habitat for the endophytic yeast. An endophytic isolate of Rhodotorula glutinis that was incapable of producing detectable levels of IAA or IPYA in vitro failed to increase the endogenous levels of IAA and IPYA and failed to promote plant growth compared to W. saturnus, although colonization of maize root tissues by R. glutinis was similar to that of W. saturnus. Both endophytic yeasts, W. saturnus and R. glutinis, were incapable of producing in vitro detectable levels of gibberellic acid, isopentenyl adenine, isopentenyl adenoside or zeatin in their culture filtrates. This study is the first published report to demonstrate the potential of an endophytic yeast to promote plant growth. This is also the first report of the production of auxins by yeasts endophytic in plant roots.

234 citations


Journal ArticleDOI
TL;DR: In this article, the influence of biochemical characteristics of 15 crop residues on C and N mineralisation in soil was investigated by following the decomposition of roots, stems and leaves of four subtropical species and one temperate species buried into the soil.
Abstract: The influence of biochemical characteristics of 15 crop residues on C and N mineralisation in soil was investigated by following the decomposition of roots, stems and leaves of four subtropical species and one temperate species buried into the soil. The C, N and polyphenols contents were measured in different biochemical pools obtained from residues of the different organs. The mineralisation of root C was significantly lower than that of leaves and stems. Chemical analysis showed a higher polyphenol content in the leaves and a higher ligninlike content in the roots. Carbon and N mineralisation were simulated with the STICS decomposition submodel and tested against the data set. The model predicted leaf and stem C mineralisation for all five species fairly accurately, but failed to predict root C mineralisation, indirectly revealing the more complex composition of the root tissue. The results showed the interest of separately considering the different plant parts when studying plant residue decomposition and the need to develop other methods of residue quality characterisation to improve the prediction of residue decomposition.

204 citations


Journal ArticleDOI
TL;DR: The application of a mixture of manioc peel and charcoal, by improving crop production and soil fertility and enhancing earthworm activity, could be a potentially efficient organic manure for legume production in tropical areas where maniOC is cultivated under slash-and-burn shifting agriculture.
Abstract: In tropical areas, where crop production is limited by low soil quality, the development of techniques improving soil fertility without damage to the environment is a priority. In French Guiana, we used subsistence farmer plots on poor acidic soils to test the effect of different organic amendments, bitter manioc peel (M), sawdust (Sw) and charcoal (Ch), on soil nutrient content, earthworm abundance and yard-long bean (Vigna unguiculata sesquipedalis) production. The peregrine Pontoscolex corethrurus was the only earthworm species found. Pod production and plant growth were lowest in unamended soil. The application of a mixture of manioc peel and charcoal (M + Ch) improved legume production compared with other organic mixtures. It combined the favourable effects of manioc peel and charcoal. Manioc peel improved soil fertility through its low C:N ratio and its high P content, while charcoal decreased soil acidity and exchangeable Al and increased Ca and Mg availability, thus alleviating the possible toxic effects of Al on plant growth. The M + Ch treatment was favourable to P. corethrurus, the juvenile population of which reached a size comparable to that of the nearby uncultivated soil. The application of a mixture of manioc peel and charcoal, by improving crop production and soil fertility and enhancing earthworm activity, could be a potentially efficient organic manure for legume production in tropical areas where manioc is cultivated under slash-and-burn shifting agriculture.

135 citations


Journal ArticleDOI
TL;DR: In this paper, an automated laboratory soil incubation system enabled the effects on gaseous emissions from a soil to be quantified accurately, when amended with slurry plus a nitrification inhibitor: dicyandiamide (DCD), or 3,4-dimethylpyrazole phosphate (DMPP).
Abstract: An automated laboratory soil incubation system enabled the effects on gaseous emissions from a soil to be quantified accurately, when amended with slurry plus a nitrification inhibitor: dicyandiamide (DCD), or 3,4-dimethylpyrazole phosphate (DMPP). Nitrification inhibitors applied with slurry under simulated Portuguese conditions were very efficient in reducing N2O emission, and did not increase CH4 emissions significantly, when the soil was predominantly aerobic. The inhibitors were also indirectly effective in reducing N2O emissions due to denitrification during a subsequent anaerobic phase. All gaseous emissions followed strong diurnal patterns that were positively correlated with soil temperature and obeyed a Q10=2 relationship. The widespread use of DCD and DMPP inhibitors with slurry applied to Portuguese soils could have the potential to reduce N2O emissions from this source by ten- to 20-fold.

134 citations


Journal ArticleDOI
TL;DR: In this paper, a vermicompost with Eisenia fetida, cow manure and oat straw for two months at three different moisture contents (60, 70% and 80% dry weight base) in triplicate to reduce pathogens and toxic organic compounds, and to find the best medium for growth of E. fetida.
Abstract: Biosolids, mainly from textile industries and the rest from households, were vermicomposted with Eisenia fetida, cow manure and oat straw for 2 months at three different moisture contents (60%, 70% and 80% dry weight base) in triplicate to reduce pathogens and toxic organic compounds, and to find the best medium for growth of E. fetida. The vermicompost with the best stability and maturity and a weight loss of 18% was obtained with 1,800 g biosolid, no straw and 800 g manure at 70% water content. This vermicompost had the following properties: pH 7.9; organic C content of 163 g kg−1; an electrolytic conductivity of 11 mS cm−1; a humic-to-fulvic acid ratio of 0.5 (HA/FA); total N content of 9 g kg−1; water soluble C (Cw) less than 0.5%; cation exchange capacity of 41 cmolc kg−1; a respiration rate of 188 mg CO2-C kg−1 compost-C day−1; a NO3−/CO2 ratio greater than 8; and a NH4+/NO3− ratio lower than 0.16. The vermicompost gave a germination index for cress (Lepidium sativum) of 80% after 2 months while the earthworm production increased 1.2-fold and volatile solids decreased five times. In addition, the vermicompost contained less than 3 CFU g−1Salmonella spp., no fecal coliforms and Shigella spp. and no eggs of helminths. Concentration of sodium was 152 mg kg−1 dry compost, while concentrations of chromium, copper, zinc and lead were below the limits established by the USEPA.

128 citations


Journal ArticleDOI
TL;DR: In this paper, sustainability index was calculated to assess soil quality under the influence of different fertilizer management practices, which is based on the area of the triangle in which nutrient index, microbial index, and crop index of soil represented the three vertices of a triangle.
Abstract: Sustainability index was calculated to assess soil quality under the influence of different fertilizer management practices. It is based on the area of the triangle in which nutrient index, microbial index and crop index of soil represented the three vertices of a triangle. Nutrient index reflected the nutrient status of soil and was calculated from the measurements of various soil chemical parameters. Microbial index was calculated by determining various soil microbial and biochemical activities and crop index by measuring of crop yield parameters. Eighteen soil indicators were determined to assess nutrient index, microbial index and crop index in order to compare the effect of different sources of nutrients such as green manure, farmyard manure and chemical fertilizer in a rice/corn–wheat rotation. The indices were applied to assess the sustainability of five field experiments with respect to the different fertilizer treatments. The long-term application of organic manures in rice/corn–wheat cropping system increased the index value because it increased the nutrient index, microbial index and crop index of soils. The use of only chemical fertilizers in the rice–wheat cropping system resulted in poor soil microbial index and crop index. In corn–wheat system, additional application of FYM at 10 t ha−1 before sowing corn made the system more sustainable than application of 100%NPK; the sustainability index values were 2.43 (the highest for this system) and 0.93, respectively.

116 citations


Journal ArticleDOI
TL;DR: The types and amounts of carbon (C) and nitrogen (N) inputs, as well as irrigation management are likely to influence gaseous emissions and microbial ecology of agricultural soil as discussed by the authors.
Abstract: The types and amounts of carbon (C) and nitrogen (N) inputs, as well as irrigation management are likely to influence gaseous emissions and microbial ecology of agricultural soil. Carbon dioxide (CO2) and nitrous oxide (N2O) efflux, with and without acetylene inhibition, inorganic N, and microbial biomass C were measured after irrigation or simulated rainfall in two agricultural fields under tomatoes (Lycopersicon esculentum). The two fields, located in the California Central Valley, had either a history of high organic matter (OM) inputs (“organic” management) or one of low OM and inorganic fertilizer inputs (“conventional” management). In microcosms, where short-term microbial responses to wetting and drying were studied, the highest CO2 efflux took place at about 60% water-filled pore space (WFPS). At this moisture level, phospholipid fatty acids (PLFA) indicative of microbial nutrient availability were elevated and a PLFA stress indicator was depressed, suggesting peak microbial activity. The highest N2O efflux in the organically managed soil (0.94 mg N2O-N m−2 h−1) occurred after manure and legume cover crop incorporation, and in the conventionally managed soil (2.12 mg N2O-N m−2 h−1) after inorganic N fertilizer inputs. Elevated N2O emissions occurred at a WFPS >60% and lasted <2 days after wetting, probably because the top layer (0–150 mm) of this silt loam soil dried quickly. Therefore, in these cropping systems, irrigation management might control the duration of elevated N2O efflux, even when C and inorganic N availability are high, whereas inorganic N concentrations should be kept low during times when soil moisture cannot be controlled.

109 citations


Journal ArticleDOI
TL;DR: The effects of increasing rates of Pb, Zn and Cu on extractable heavy metal levels, barley yields, basal respiration and the activities of catalase, urease, invertase and acid phosphatase were investigated in two soils in a 2-year greenhouse experiment as mentioned in this paper.
Abstract: The effects of increasing rates of Pb, Zn and Cu on extractable heavy metal levels, barley yields, basal respiration and the activities of catalase, urease, invertase and acid phosphatase were investigated in two soils in a 2-year greenhouse experiment. In the first year, barley yields were decreased by increasing additions of Pb, Zn and Cu. In the second year, increased yields were recorded at lower rates of addition of all three metals in both the chestnut and chernozem soils. Yield depressions were most marked for added Cu and least marked for Pb but, in contrast, accumulation of heavy metals in grain, in excess of recommended limits, was most pronounced for Pb and did not occur for Cu. Increasing rates of all three metals caused a decrease in basal respiration; the degree of inhibition was generally greater in the second than in the first year. After 1 year of incubation, increasing rates of addition of metals reduced all tested enzyme activities. However, after 2 years, the pattern of response was more complex, with increases in enzyme activities being noted at lower rates of addition of all three metals. In general, invertase and urease activities were more markedly inhibited by heavy metal contamination than those of catalase and phosphatase. Ammonium acetate-extractable heavy metal concentrations in soils were less after 2 years than 1 years reaction time due to their transformation into less labile forms. Significant negative correlations between grain yield, basal respiration and enzyme activities were observed in both years.

109 citations


Journal ArticleDOI
TL;DR: It is concluded that the communities of dominant and most commonly occurring AM fungi changed in response to N amendment, although the root colonization showed minimal or no response.
Abstract: Intracellular arbuscular mycorrhizal (AM) colonization was compared between nitrogen (NH4NO3) fertilized (10 g N m−2) and nonfertilized tallgrass prairie plots. In the microscopic analyses of host roots, only intracellular coils showed an increasing trend as a result of N fertilization, whereas intracellular colonization by arbuscules, hyphae, or vesicles did not differ between the N treatments. Clone libraries established from pooled PCR products of AM fungi contained exclusively species of Glomus; no other genera were detected indicating that Glomus spp. dominated the host roots. Comparisons between observed and random topologies indicated that cloned sequence placement covaried with N treatment: unique clades within Glomus originated exclusively from N-fertilized or nonfertilized treatments. We conclude that the communities of dominant and most commonly occurring AM fungi changed in response to N amendment, although the root colonization showed minimal or no response.

101 citations


Journal ArticleDOI
TL;DR: In this article, the effect of different treatments on the fate of applied P was investigated in a long-term field experiment started in 1972-1973 following a maize-wheat sequence, where soil samples were collected after 29 years of continuous addition of mineral fertilizers and amendments such as farmyard manure (FYM) and lime.
Abstract: The effect of different treatments on the fate of applied P was investigated in a long-term field experiment started in 1972–1973 following a maize–wheat sequence. The soil samples were collected after 29 years of continuous addition of mineral fertilizers and amendments such as farmyard manure (FYM) and lime. The total P content of all the treatments increased compared to the original soil; NaOH-inorganic P (Pi) (NaOH-Pi) representing Fe and Al-bound P was the dominant Pi fraction. At the beginning of the experiment (1972–1973), the various P pools could be quantitatively ranked in the following order: residual P>NaOH-organic P (Po)>NaOH-Pi>NaHCO3-Po>NaHCO3-Pi>HCl-P>H2O-P. As a result of continued P fertilization and cropping, the order changed as follows: residual P>NaOH-Pi>NaOH-Po>NaHCO3-Pi>NaHCO3-Po>HCl-P>H2O-P. Compared to the imbalanced mineral fertilizer application, the balanced as well as integrated application of nutrients resulted in significantly lower P adsorption capacity of soils. The Olsen extractable-P fraction (plant-available P) increased from about 12 mg kg−1 soil in 1972 to about 81 mg kg−1 soil in the treatments receiving P for the last 29 years.

Journal ArticleDOI
TL;DR: Pink-pigmented facultative methylotrophic bacteria (PPFMs) strains isolated from different parts of the sugarcane clone Co86032 showed growth on methanol, and were further confirmed based on the mxaF gene encoding the α-subunit of the methanl dehydrogenase by polymerase chain reaction amplification using specific primers.
Abstract: The existence of Methylobacterium as a symbiont with sugarcane and its influence on crop growth at various stages was examined. Pink-pigmented facultative methylotrophic bacteria (PPFMs) strains isolated from different parts of the sugarcane clone Co86032 showed growth on methanol, and were further confirmed based on the mxaF gene encoding the α-subunit of the methanol dehydrogenase by polymerase chain reaction amplification using specific primers. True seeds inoculated with PPFMs had a higher germination percent and rate of germination than the control. A combined treatment of seed imbibition, soil application and phyllosphere spray increased specific leaf area, plant height, number of internodes, and cane yield. Immunological determination of cytokinin in young and mature leaves significantly increased when the epiphytic population on the leaf surface increased. Trends in sugar qualities in the form of Pol (sucrose) % in cane, Brix % in cane, and commercial cane sugar were similar to that of cane yield. These effects might be mediated by the production or synthesis of plant hormones.

Journal ArticleDOI
TL;DR: The results of this study suggest that functionally different microbial populations may be present under pecan trees compared to cropped alleys which may promote disparities in nutrient availability necessitating differential long-term nutrient management in such alley cropping systems.
Abstract: Spatially dependent patterns in microbial properties may exist in temperate alley cropping systems due to differences in litter quality and microclimate in areas under trees compared to those in the alleys. The effect of tree row location was evaluated for its impact on soil enzyme activities and Biolog substrate use patterns. Soils were sampled to a depth of 30 cm at the tree row and at the middle of the alley at two sites: a 21-year-old pecan (Carya illinoinensis)/bluegrass (Poa trivials) intercrop (Pecan site) and a 12-year-old silver maple (Acer saccharinum)/soybean (Glycine max)–maize (Zea mays) rotation (Maple site). Sampling was done in fall 2001 and summer 2002. β-Glucosidase activities, Biolog patterns expressed as average well color (AWC), substrate richness, and Shannon diversity index, and total Kjeldahl nitrogen (TKN) were significantly higher (P<0.05) in the tree row than at the middle of the alley for surface soils at the Pecan site. Fluorescein diacetate (FDA) hydrolytic activity was also higher at the tree row for soils sampled in the fall, but did not differ significantly for soils sampled in the summer. At the Maple site, AWC and substrate richness were significantly higher at the tree row for soils sampled in 2001. Soil volumetric water content and temperature were generally lower in the tree row at the Maple site. The results of this study suggest that functionally different microbial populations may be present under pecan trees compared to cropped alleys which may promote disparities in nutrient availability necessitating differential long-term nutrient management in such alley cropping systems.

Journal ArticleDOI
TL;DR: In this article, the effects of crop residue management and fertilizer applications on the size and activity of the microbial community and the activity of exocellular enzymes involved in mineralization of C, N, P and S were examined on a long-term (60 years) field trial under sugarcane situated at Mount Edgecombe, South Africa.
Abstract: The effects of crop residue management and fertilizer applications on the size and activity of the microbial community and the activity of exocellular enzymes involved in mineralization of C, N, P and S were examined on a long-term (60 years) field trial under sugarcane situated at Mount Edgecombe, South Africa. Treatments at the site included pre-harvest burning with harvest residues removed (B), burning with harvest residues (unburnt tops) left on the soil surface (Bt) and green cane harvesting with retention of a trash blanket (T). Plots were either fertilized annually with N, P and K or unfertilized. The size and activity of the microbial community and the activity of soil enzymes assayed increased with increasing inputs of crop residues (B < Bt < T) and this effect was evident to a depth of 30 cm. The metabolic quotient was decreased by inputs of both crop residues and fertilizers. Annual fertilizer additions did not affect basal respiration, increased fluorescein diacetate (FDA) hydrolysis rate and acid phosphatase, invertase and protease activities and decreased arginine ammonification rate and dehydrogenase, alkaline phosphatase, arylsulphatase and histidase activities. These effects were attributed to an interaction between the positive effect of fertilizer in increasing the size of the microbial biomass and the negative effect of fertilizer-N-induced soil acidification on microbial activity and on the activity of exocellular enzymes. Such results demonstrate the importance of using a range of measurements of microbial and enzyme activity when determining the effects of management on soil microbial and biochemical properties.

Journal ArticleDOI
TL;DR: In this article, a laboratory incubation of manured soil was carried out in order to study N mineralization, gas fluxes, denitrification, and microbial N immobilization after manure application.
Abstract: Understanding the N-cycling processes that ensue after manuring soil is essential in order to estimate the value of manure as an N fertilizer. A laboratory incubation of manured soil was carried out in order to study N mineralization, gas fluxes, denitrification, and microbial N immobilization after manure application. Four different manures were enclosed in mesh bags to allow for the separate analysis of manure and soil. The soils received 0.15 mg manure N g−1 soil, and the microcosms were incubated aerobically and sampled throughout a 10-week period. Manure addition resulted in initial NH4-N concentrations of 22.1 to 36.6 mg kg−1 in the microcosms. All manured microcosms had net declines in soil mineral N. Denitrification resulted in the loss of 14.7 to 39.2% of the added manure N, and the largest N losses occurred in manures with high NH4-N content. Increased soil microbial biomass N amounted to 6.0 to 8.6% of the added manure N. While the microcosms as a whole had negative N mineralization, all microcosms had positive net nitrification within the manure bags. Gas fluxes of N2O and CO2 increased in all manured soils relative to the controls. Our results show that measurement of microbial biomass N and denitrification is important to understand the fate of manure N upon soil application.

Journal ArticleDOI
TL;DR: The optimal prey in the present investigation was the biggest prey because it yielded the highest biomass uptake per time and in addition, the size of M. richtersi played an important role in consumption rate.
Abstract: In a series of laboratory experiments, we presented carnivorous Macrobiotus richtersi (Tardigrada, Macrobiotidae) with nematode prey to assess their importance as predator. We investigated consumption rate for (a) different prey densities (10–400 prey individuals), (b) different prey biomasses (22–80 ng), (c) different prey species (Pelodera teres, Rhabditidae, versus Acrobeloides nanus, Cephalobidae) and (d) different environments (2-D agar surface versus 3-D sand fractions of three different textures). M. richtersi consumed up to 4.6 μg nematode prey in 4 h, that is, 43% of the tardigrade’s body mass. Predation rate was positively correlated with prey density. The optimal prey in the present investigation was the biggest prey because it yielded the highest biomass uptake per time. In addition, the size of M. richtersi played an important role in consumption rate. Bacterivorous nematodes reacted differently to attack. Even in a water film on stiff agar where nematode agility was limited, a vigorous undulation reaction of P. teres led to a measurable reduction in consumption rate. A. nanus, in contrast, showed little response to attack. Microcosm experiments with sands of different particle size demonstrated that M. richtersi is able to chase and consume small bacterivorous nematodes in a 3-D soil matrix. However, consumption rate in sand microcosms was significantly reduced compared with pure agar. The sand matrix improved nematode agility and possibly provided small pores as refuge for the nematodes. The lowest consumption rate was observed in fine sand. Effects of predatory tardigrades on nematode numbers in the field are discussed.

Journal ArticleDOI
TL;DR: In this article, the authors measured the ecosystem response to the urban soil environment, including leaf litter decomposition rates using a reference leaf litter, and net N-mineralization and net nitrification rates using paired in situ soil cores.
Abstract: We studied soil processes along an urban to rural gradient. To determine the ecosystem response to the urban soil environment, we measured (1) leaf litter decomposition rates using a reference leaf litter, and (2) net N-mineralization and net nitrification rates using paired in situ soil cores. A significant trend toward slower litter decomposition rates toward the urban end of the gradient was observed. In addition, percent ash-free dry mass remaining of the litter was significantly higher during the course of the study but was not statistically significant at the final sampling date. Litter C:N ratio had a complex response with respect to degree of urban land use, and litter % N did not differ between land-use types. Litter decomposition rates were not significantly correlated with observed soil physicochemical and biological characteristics but were influenced by soil moisture and soil organic matter. Net N-mineralization rates were higher in urban soils. Net nitrification rates did not differ with land-use type. Net N-mineralization rates were positively correlated with soil temperature, indicating a response to the urban heat island effect. Net N-mineralization rates were negatively correlated with the numbers of higher trophic level nematodes.

Journal ArticleDOI
TL;DR: Weight loss appears to be a valuable endpoint that can be used with worms freshly collected in the field as long as variability in the response of a control is taken into account.
Abstract: The chemical imidacloprid is the major component of many widely used insecticides and is relatively persistent in soils. A set of experiments was carried out to estimate the lethal (mortality) and sublethal (weight loss) effects of one of these insecticides, Confidor, on two earthworm species commonly found in agricultural soils. A preliminary experiment in the absence of earthworms showed that imidacloprid was not rapidly degraded, with a decrease of less than 10% after 2 weeks, and that it was distributed in a reasonably homogeneous manner throughout the soil (less than 10% of variation between samples). The LC50 of imidacloprid for the anecic species Aporrectodea nocturna and the endogeic species Allolobophora icterica was between 2 and 4 mg kg−1 dry soil. This result is consistent with previous findings obtained with other earthworm species and natural soils. When sublethal effects were examined, significant decreases in weight were observed at concentrations of 0.5 and 1 mg kg−1 dry soil for the two earthworm species whereas no effect was observed at a concentration of 0.1 mg kg−1 dry soil (NOEC value). These concentrations are close to 0.33 mg kg−1 which is the Predictive Environmental Concentration. Weight loss appears to be a valuable endpoint that can be used with worms freshly collected in the field as long as variability in the response of a control is taken into account.

Journal ArticleDOI
TL;DR: In this paper, the effect of elemental S (S0) under three moisture (40, 60, 120% water-filled pore space; WFPS) and three temperature regimes (12, 24, 36°C) on changes in pH and available P (0.5 N NaHCO3-extractable P) was evaluated.
Abstract: We evaluated the effect of elemental S (S0) under three moisture (40, 60, 120% water-filled pore space; WFPS) and three temperature regimes (12, 24, 36°C) on changes in pH and available P (0.5 N NaHCO3-extractable P) concentrations in acidic (pH 4.9), neutral (pH 7.1) and alkaline (pH 10.2) soils. Repacked soil cores were incubated for 0, 14, 28 and 42 days. Application of S0 did not alter the trends of pH in acidic and neutral soils at all moisture regimes but promoted a decrease in the pH of alkaline soil under aerobic conditions (40%, 60% WFPS). Moisture and temperature had profound effects on the available P concentrations in all three soils, accumulation of available P being greatest under flooded conditions (120% WFPS) at 36°C. Application of S0 in acidic, neutral and alkaline soils resulted in the net accumulation of 16.5, 14.5 and 13 μg P g−1 soil after 42 days at 60% WFPS, but had no effect under flooded conditions. The greatest available P accumulations in the respective soils were 19, 19.5 and 20 μg P g−1 soil (equivalent to 38, 41, 45 kg P ha−1) with the combined effects of 36°C, 60% WFPS and applied S0. The results of our study revealed that oxidation of S0 lowered the pH of alkaline soil (r=−0.88, P<0.01), which in turn enhanced available P concentrations. Also, considering the significant relationship between the release of sulphate and accumulation of P, even in acidic soil (r=0.92, P<0.01) and neutral soil (r=0.85, P<0.01) where the decrease in pH was smaller, it is possible that the stimulatory effect of sulphate on the availability of P was due to its concurrent desorption from the colloidal surface, release from fixation sites and/or mineralization of organic P. Thus, in the humid tropics and irrigated subtropics where high moisture and temperature regimes are prevalent, the application of S0 could be beneficial not only in alleviating S deficiency in soils but also for enhancing the availability of P in arable soils, irrespective of their initial pH.

Journal ArticleDOI
TL;DR: In this article, the authors focused on N balance in a paddy field planted with whole crop rice (Oryza sativa cv. Kusahonami), and the experiment was conducted with two treatments during two rice-growing seasons.
Abstract: This paper focuses on N balance in a paddy field planted with whole crop rice (Oryza sativa cv. Kusahonami). The experiment was conducted with two treatments during two rice-growing seasons: one was fertilized with N (160 kg N ha−1; 16N plot) and the other unfertilized (0N plot); both plots were fertilized with P and K. The N input from precipitation was 15 and 12 kg N ha−1 in 2002 and 2003, respectively. The N input from irrigation water reached as much as 123 and 69 kg N ha−1 in 2002 and 2003, respectively. This was because irrigation water contained higher NO3− concentrations ranging from 4 to 8 mg N l−1. The N uptake by rice plants was the major output: 118 and 240 kg N ha−1 in the 0N and 16N plots in 2002 and 103 and 238 kg N ha−1 in 2003, respectively. N losses by leaching were 4.8–5.3 and 6.5–7.3 kg N ha−1 in 2002 and in 2003, respectively. Laboratory experiments were carried out to estimate the amounts of N2 fixation and denitrification. Amount of N2 fixation was 43 and 0 kg N ha−1 in the 0N and 16N plots, respectively. Denitrification potential was quite high in both the plots, and 90% of the N input through irrigation water was lost through denitrification. Collectively, the total N inputs were relatively large due to irrigation water contaminated with NO3−, but N outflow loading, expressed as leaching−(irrigation water + precipitation + fertilizer), showed large negative values, suggesting that the whole crop rice field might serve as a constructed wetland for decreasing N.

Journal ArticleDOI
TL;DR: In this article, the authors used soil hydrolases and soil aggregate fractionation to explore the relationship between C cycling activity and aggregate structure, and showed that the distribution of enzyme activity may play a role in the storage of C whereby the aggrading restored soils may be more susceptible to C loss during turnover of macroaggregates compared to the native prairie (NP) and agricultural (AG) soils with less macro aggregates.
Abstract: Knowledge of the cycling and compartmentalization of soil C that influence C storage may lead to the development of strategies to increase soil C storage potentials. The objective of this study was to use soil hydrolases and soil aggregate fractionation to explore the relationship between C cycling activity and soil aggregate structure. The prairie chronosequence soils were native prairie (NP) and agricultural (AG) and tallgrass prairies restored from agriculture in 1979 (RP-79) and 1993 (RP-93). Assays for β-glucosidase (E.C. 3.2.1.21) and N-acetyl-β-glucosaminidase (NAGase, EC 3.2.1.30) activities were conducted on four aggregate size fractions (>2 mm, 1–2 mm, 250 μm–1 mm, and 2–250 μm) from each soil. There were significantly greater amounts of >2-mm aggregates in the RP-79 and RP-93 soils compared to the NP and AG soils due to rapid C accumulation from native plant establishment. Activities for both enzymes (μg PNP g−1 soil h−1) were greatest in the microaggregate (2–250 μm) compared to the macroaggregate (>2 mm) fraction; however, microaggregates are a small proportion of each soil (<12%) compared to the macroaggregates (∼75%). The RP soils have a hierarchical aggregate system with most of the enzyme activity in the largest aggregate fractions. The NP and AG soils show no hierarchical structure based on aggregate C accretion and significant C enzyme activity in smaller aggregates. The distribution of enzyme activity may play a role in the storage of C whereby the aggrading restored soils may be more susceptible to C loss during turnover of macroaggregates compared to the AG and NP soils with less macroaggregates.

Journal ArticleDOI
TL;DR: In this article, the authors examined surface and subsurface soil samples from under canopy, edge of canopy and away from canopy of isolated Cordia africana Lam and Croton macrostachyus Del. trees and their leaves to investigate leaf nutrient content, root biomass and the contribution of trees on farms to soil fertility parameters.
Abstract: Surface (0–15 cm) and subsurface (30–45 cm) soil samples from under canopy, edge of canopy and away from canopy of isolated Cordia africana Lam. and Croton macrostachyus Del. trees and their leaves were examined to investigate leaf nutrient content, root biomass and the contribution of trees on farms to soil fertility parameters in Badessa area, eastern Ethiopia. Leaves of C. macrostachyus had 20% higher P and 25% lower K contents than those of C. africana. The studied species had comparable leaf N content. Both species produced shallow lateral roots that extended beyond the canopy zone. Typically, higher fine root biomass was observed in the surface soils than the subsurface soils. Both species did not affect soil organic C, pH and cation exchange capacity. Surface and subsurface soils under tree canopies had 22–26 and 12–17% higher N, respectively, than the corresponding soils away from tree canopies. Surface soil available P under tree canopies was 34–50% higher than the corresponding soil away from canopies. Available P content of subsurface soil was improved only under C. africana canopy. The available P of surface soil under C. macrostachyus canopy was more than double that for C. africana. Trees of both species increased underneath surface and subsurface exchangeable K by 18–46% compared with the corresponding controls. In conclusion, C. macrostachyus and C. africana trees on farms keep soil nutrient high via protection against leaching, translocation of nutrients from deeper to the surface layer and accumulation of litter, which create a temporary nutrient pool in the surface soils under their canopies.

Journal ArticleDOI
TL;DR: In this article, the authors conducted a study on a Sultan silt loam soil (Aquantic Xerochrept) and determined the annual P removal rate by corn (Zea mays L.) and P transformation as affected by P rate and winter cover cropping.
Abstract: Information concerning sources and sinks of available P in soil is needed to improve soil P management and protect water quality. This study, conducted from 1989 to 1998 on a Sultan silt loam soil (Aquantic Xerochrept), determined the annual P removal rate by corn (Zea mays L.) and P transformation as affected by P rate and winter cover cropping. Treatments included two P rates (0 and 44 kg P ha−1) applied to corn at planting each year. All cover crops received 19.6 kg P ha−1 at seeding each fall. Also included was a control without any cover crop and with no P addition. Corn yield and P uptake were affected by P fertilizer additions, but not by cover crops. A fairly constant amount of P was supplied from indigenous soil P when no external P was added. When the amount of P added exceeded that removed by corn, the excess P was converted mainly to NaOH-extractable inorganic P (NaOH-Pi). When the amount of P applied was below that removed by corn, indigenous soil NaOH-Pi acted as a source of available P for the plant. With no reduction of organic P (Po) extractable by NaOH or NaHCO3, the contribution from Po to the available P pool appeared limited. The role of NaOH-Pi in P availability in the soil was substantiated by its significant correlation with labile NH4Cl-extractable P (NH4Cl-P; r2 =0.60, P <0.001) or NaHCO3-Pi (r2 =0.81, P <0.001) pools. The NaOH-Pi for the soil reflected the changes in soil P resulting from past fertilizer P input and P removal by the crops.

Journal ArticleDOI
TL;DR: Specific populations reacted differently to changes in environmental conditions and supplies of C sources, which reflect the high functional diversity of soil microorganisms.
Abstract: The flow of new and native plant-derived C in the rhizosphere of an agricultural field during one growing season was tracked, the ratios in different soil C pools were quantified, and the residence times (τs) were estimated. For this the natural differences in 13C abundances of: (1) C4 soil (with a history of C4 plant, Miscanthus sinensis, cultivation), (2) C3 soil (history of C3 plant cultivation), and (3) C4/3 soil (C4 soil, planted with a C3 plant, Triticum aestivum) were used. Total amounts and δ13C values of total soil C, non-hydrolysable C, light fraction C, water-soluble C, microbial biomass C, and phospholipid fatty acids (PLFA) were determined. Using the δ13C values of soil C in a mixing and a 1-box model enabled the quantification of relative contributions of C3 plant and C4 plant C to the total amount of the respective C pools in the C4/3 soil and their τs. Compared to early spring (March), the percentage of C3 plant C increased in all pools in June and August, showing the addition of new C to the different soil C fractions. In August the contribution of new C to microbial biomass C and water-soluble C reached 64 and 89%, respectively. The τs of these pools were 115 and 147 days. The δ13C values of the dominant soil PLFA, 18:1ω7c, cy19:0, 18:1ω9c, 16:0, and 10Me16:0, showed wide ranges (−35.1 to −13.0‰) suggesting that the microbial community utilized different pools as C sources during the season. The δ13C values of PLFA, therefore, enabled the analysis of the metabolically active populations. The majority of δ13C values of PLFA from the C4/3 soil were closely related to those of PLFA from the C3 soil when T. aestivum biomass contributions to the soil were high in June and August. Specific populations reacted differently to changes in environmental conditions and supplies of C sources, which reflect the high functional diversity of soil microorganisms.

Journal ArticleDOI
TL;DR: In this paper, Nitrosomonas europaea and Nitrosospira sp. were used as a source of C and N by nitrifying microorganisms, which may account for rapid nitrification of urea-N in soils.
Abstract: Nitrate has been found to accumulate more rapidly in soils fertilized with urea than with inorganic sources of NH4 +, despite the fact that nitrification must be preceded by hydrolytic decomposition. For acidic conditions, this finding has been attributed to limited uptake of NH4 + by ammonium-oxidizing bacteria (also reported herein), suggesting an advantage for direct utilization of a nonionizable N substrate such as urea. If the same advantage applies to urea-C, nitrification of urea-N would also be promoted in neutral or alkaline soils, as reported in numerous studies. To ascertain whether urea-C can be utilized directly by nitrifying organisms, NO2 − production was measured for Nitrosomonas europaea and Nitrosospira sp. NPAV in minimal media with urea as the sole source of either C or C and N. Nitrite accumulated only with the latter organism, in which case nearly quantitative recovery was observed for N added as NH4 + and/or urea. In a subsequent study, recovery of 14C and 15N in gaseous, extractable, and hydrolyzable forms was determined after incubation with labeled urea for up to 29 days, by using two soils that differed markedly in physiochemical properties affecting nutrient availability. Results obtained in correlating 14C incorporation in the amino acid fraction with 15N accumulation as NO3 − were consistent with the stoichiometry that would be expected if C fixation were driven by autotrophic nitrification. Our findings demonstrate unequivocally that urea is utilized as a source of C and N by nitrifying microorganisms, which may account for rapid nitrification of urea-N in soils.

Journal ArticleDOI
TL;DR: Increased (dehydrogenase, urease, protease-BAA, acid phosphatase and β-glucosidase) enzyme activities, in particular of dehydrogenase and acid phosphate, were recorded in the rhizosphere of both mycorrhizal shrub species.
Abstract: This study was carried out in a semiarid degraded area to assess the effectiveness of mycorrhizal inoculation with a mixture of native arbuscular mycorrhizal (AM) fungi or an allochthonous AM fungus (Glomus claroideum), on the establishment of Olea europaea subsp. sylvestris L. and Retama sphaerocarpa (L.) Boissier in this area. Associated changes in the soil microbiological properties and aggregate stability related to these AM inocula were also recorded. Eighteen months after planting, G. claroideum had increased available P in the rhizosphere of both shrub species. In general, both inoculation treatments increased water-soluble C and water-soluble and total carbohydrates, G. claroideum being the most effective inoculum, particularly in R. sphaerocarpa. The mixture of native AM fungi was the most effective treatment for increasing the aggregate stability of R. sphaerocarpa soil, while that of O. europaea was increased only by G. claroideum. Increased (dehydrogenase, urease, protease-BAA, acid phosphatase and β-glucosidase) enzyme activities, in particular of dehydrogenase and acid phosphatase, were recorded in the rhizosphere of both mycorrhizal shrub species. The mixture of native AM fungi was the most effective treatment for stimulating the growth of O. europaea and R. sphaerocarpa (11.6-fold and 3.3-fold, respectively, greater than control plants). The establishment of mycorrhizal shrub species favoured the reactivation of soil microbial activity, which was linked to an increase in aggregate stability.

Journal ArticleDOI
TL;DR: Spatial pattern and life-span of fungus-comb chambers should be an important parameter to be considered in the functional role of subterranean Macrotermitinae termites in the savanna.
Abstract: Fungus-growing termites (Isoptera, Macrotermitinae) play an important role in tropical ecosystems in modifying soil physical properties. Most of the literature regarding the impact of termites on soil properties refers to termite epigeous mounds. In spite of their abundance and activity in African savannas, few studies deal with the properties of underground nest structures (fungus-comb chambers) built by subterranean Macrotermitinae termites. We tested whether these termites significantly modify the soil physico-chemical properties within their nests in a humid tropical savanna and whether these effects are different for two termite species with differing building behaviour. Termite-worked soil material was collected from fungus-comb chamber walls of two widespread species: Ancistrotermes cavithorax, which builds diffuse and ephemeral nests and Odontotermes nr pauperans, which most often builds concentrated and permanent nests for a comparatively much longer period of time. Neither species influenced soil pH but both significantly modified soil texture and C-N content in their nest structures. A strong impact on clay-particle size was also detected but no significant differences in clay mineralogy. Thus Odontotermes has a greater effect on soil properties, that could be explained by its building behaviour and the concentration in space of its nest units. Therefore, spatial pattern and life-span of fungus-comb chambers should be an important parameter to be considered in the functional role of subterranean Macrotermitinae termites in the savanna.

Journal ArticleDOI
TL;DR: In this article, the impacts of conventional tillage (CT), no-tillage (NT), and cropping intensity on soil organic C (SOC) and N (SON) sequestration and on distribution within aggregate-size fractions in a central Texas soil after 20 years of treatment imposition were investigated.
Abstract: Management practices, such as no tillage (NT) and intensive cropping, have potential to increase C and N sequestration in agricultural soils. The objectives of this study were to investigate the impacts of conventional tillage (CT), NT, and cropping intensity on soil organic C (SOC) and N (SON) sequestration and on distribution within aggregate-size fractions in a central Texas soil after 20 years of treatment imposition. Tillage regime and cropping sequence significantly impacted both SOC and SON sequestration. At 0–5 cm, NT increased SOC storage compared to CT by 33% and 97% and SON storage by 25% and 117% for a sorghum/wheat/soybean (SWS) rotation and a continuous sorghum monoculture, respectively. Total SOC and SON storage at both 0–5 and 5–15 cm was greater for SWS than continuous sorghum regardless of tillage regime. The majority of SOC and SON storage at 0–5 cm was observed in 250-μm to 2-mm aggregates, and at 5–15 cm, in the >2-mm and 250-μm to 2-mm fractions. Averaged across cropping sequences at 0–5 cm, NT increased SOC storage compared to CT by 212%, 96%, 0%, and 31%, and SON storage by 122%, 92%, 0%, and 37% in >2-mm, 250-μm to 2-mm, 53- to 250-μm, and <53-μm aggregate-size fractions. No tillage and increased cropping intensity improved soil fertility by increasing soil organic matter levels and potential nutrient supply to crops.

Journal ArticleDOI
TL;DR: In this paper, the succession of cyanobacteria was studied in a usar (alfisol, solonetz, alkaline) soil, located in a tropical region of upper Gangetic plain, following the first rainfall for a period of 10 months (i.e., July-April).
Abstract: The succession of cyanobacteria was studied in a usar (alfisol, solonetz, alkaline) soil, located in a tropical region of upper Gangetic plain, following the first rainfall for a period of 10 months (i.e., July–April). A dozen cyanobacteria were identified to grow on the soil surface and their appearance was in the following order: Microcoleus sp., Calothrix brevissima, Scytonema sp., Cylindrosprmum licheniformae, Cylindrosprmum fertilissima, Nostoc calcicola, Nostoc punctiformae, Aphanothece parietina, Nostoc commune, Aulosira fertilissima, Phormidium sp., and Oscillatoria sp. Among these cyanobacteria, N. calcicola was the dominant species. N. calcicola was inoculated on the alkaline soil and incubated under ambient conditions in the light for 2 years in the laboratory. Changes in soil properties were more rapid after the incorporation of pyrite (FeS2). Recovery was monitored by using a filamentous heterocystous cyanobacterium N. calcicola and its bicarbonate-resistant (HCO3−R) mutant. The mutant strain showed better response to modification of soil pH following growth in soil.

Journal ArticleDOI
TL;DR: The combined inoculation improves many plant and yield parameters and, therefore, has some advantages over single inoculation provided that rock phosphate was supplied at an amount not exceeding 1 Mg ha−1.
Abstract: A plant growth-promoting rhizobacterium (Azospirillum brasilense Sp7) and a bio-control fungus, which can solubilize insoluble phosphorus (Trichoderma harzianum Rifai 1295-22), were evaluated for their single and combined effects on dry bean (Phaseolus vulgaris) and wheat (Triticum aestivum L.) grown in soil. A pot experiment with bean and a field experiment with both bean and wheat were established. In contrast to single inoculation of Trichoderma, the single inoculation of Azospirillum and the double inoculation did not significantly (P >0.05) increase nodule numbers and nodule mass at 45 days after planting in pot grown beans. However, the Azospirillum inoculation with supplementary phosphorus significantly (P 0.05) differences among the inoculation treatments for plant dry weight, total plant nitrogen, and total plant phosphorus at 45 days after planting in both pot and field experiments with bean. However, the combined inoculation and rock phosphate application at 1 Mg ha−1 significantly (P 0.05). The combined inoculation improves many plant and yield parameters and, therefore, has some advantages over single inoculation provided that rock phosphate was supplied at an amount not exceeding 1 Mg ha−1. Higher rock phosphate application rates decreased many plant and yield parameters in our study.