scispace - formally typeset
Search or ask a question

Showing papers in "Biomedicines in 2018"


Journal ArticleDOI
TL;DR: This review summarized current data on resveratrol pharmacological effects and confirmed its anticancer properties, as well as other bioactive effects, namely as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective.
Abstract: Resveratrol (3,5,4′-trihydroxy-trans-stilbene) belongs to polyphenols’ stilbenoids group, possessing two phenol rings linked to each other by an ethylene bridge. This natural polyphenol has been detected in more than 70 plant species, especially in grapes’ skin and seeds, and was found in discrete amounts in red wines and various human foods. It is a phytoalexin that acts against pathogens, including bacteria and fungi. As a natural food ingredient, numerous studies have demonstrated that resveratrol possesses a very high antioxidant potential. Resveratrol also exhibit antitumor activity, and is considered a potential candidate for prevention and treatment of several types of cancer. Indeed, resveratrol anticancer properties have been confirmed by many in vitro and in vivo studies, which shows that resveratrol is able to inhibit all carcinogenesis stages (e.g., initiation, promotion and progression). Even more, other bioactive effects, namely as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective have also been reported. Nonetheless, resveratrol application is still being a major challenge for pharmaceutical industry, due to its poor solubility and bioavailability, as well as adverse effects. In this sense, this review summarized current data on resveratrol pharmacological effects.

559 citations


Journal ArticleDOI
TL;DR: Although NF-κB has been identified to be a major contributor to cancer initiation and development, there is evidence revealing its role in tumor suppression, as well as a few important pharmacological strategies that have been developed to modulate NF-σB function.
Abstract: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. At the same time, this transcription factor can control the expression of a plethora of genes that promote tumor cell proliferation, survival, metastasis, inflammation, invasion, and angiogenesis. The aberrant activation of this transcription factor has been observed in several types of cancer and is known to contribute to aggressive tumor growth and resistance to therapeutic treatment. Although NF-κB has been identified to be a major contributor to cancer initiation and development, there is evidence revealing its role in tumor suppression. This review briefly highlights the major mechanisms of NF-κB activation, the role of NF-κB in tumor promotion and suppression, as well as a few important pharmacological strategies that have been developed to modulate NF-κB function.

166 citations


Journal ArticleDOI
TL;DR: A review of the more recent literature about the pathogenesis of non-melanoma skin cancer focusing on basal cell carcinomas, squamous cell carcinoma and actinic keratosis focused on molecular and genetic factors and analyzed in detail several factors involved in the process.
Abstract: (1) Background: Non-melanoma skin cancer is the most frequently diagnosed cancer in humans. The process of skin carcinogenesis is still not fully understood. However, several studies have been conducted to better explain the mechanisms that lead to malignancy; (2) Methods: We reviewed the more recent literature about the pathogenesis of non-melanoma skin cancer focusing on basal cell carcinomas, squamous cell carcinoma and actinic keratosis; (3) Results: Several papers reported genetic and molecular alterations leading to non-melanoma skin cancer. Plenty of risk factors are involved in non-melanoma skin cancer pathogenesis, including genetic and molecular alterations, immunosuppression, and ultraviolet radiation; (4) Conclusion: Although skin carcinogenesis is still not fully understood, several papers demonstrated that genetic and molecular alterations are involved in this process. In addition, plenty of non-melanoma skin cancer risk factors are now known, allowing for an effective prevention of non-melanoma skin cancer development. Compared to other papers on the same topic, our review focused on molecular and genetic factors and analyzed in detail several factors involved in non-melanoma skin cancer.

161 citations


Journal ArticleDOI
TL;DR: Although abundant biochemical mechanisms are proposed for the initiation and perpetuation of liver injury, patients with an alcohol problem benefit from permanent alcohol abstinence alone.
Abstract: Alcoholic liver disease is the result of cascade events, which clinically first lead to alcoholic fatty liver, and then mostly via alcoholic steatohepatitis or alcoholic hepatitis potentially to cirrhosis and hepatocellular carcinoma. Pathogenetic events are linked to the metabolism of ethanol and acetaldehyde as its first oxidation product generated via hepatic alcohol dehydrogenase (ADH) and the microsomal ethanol-oxidizing system (MEOS), which depends on cytochrome P450 2E1 (CYP 2E1), and is inducible by chronic alcohol use. MEOS induction accelerates the metabolism of ethanol to acetaldehyde that facilitates organ injury including the liver, and it produces via CYP 2E1 many reactive oxygen species (ROS) such as ethoxy radical, hydroxyethyl radical, acetyl radical, singlet radical, superoxide radical, hydrogen peroxide, hydroxyl radical, alkoxyl radical, and peroxyl radical. These attack hepatocytes, Kupffer cells, stellate cells, and liver sinusoidal endothelial cells, and their signaling mediators such as interleukins, interferons, and growth factors, help to initiate liver injury including fibrosis and cirrhosis in susceptible individuals with specific risk factors. Through CYP 2E1-dependent ROS, more evidence is emerging that alcohol generates lipid peroxides and modifies the intestinal microbiome, thereby stimulating actions of endotoxins produced by intestinal bacteria; lipid peroxides and endotoxins are potential causes that are involved in alcoholic liver injury. Alcohol modifies SIRT1 (Sirtuin-1; derived from Silent mating type Information Regulation) and SIRT2, and most importantly, the innate and adapted immune systems, which may explain the individual differences of injury susceptibility. Metabolic pathways are also influenced by circadian rhythms, specific conditions known from living organisms including plants. Open for discussion is a 5-hit working hypothesis, attempting to define key elements involved in injury progression. In essence, although abundant biochemical mechanisms are proposed for the initiation and perpetuation of liver injury, patients with an alcohol problem benefit from permanent alcohol abstinence alone.

124 citations


Journal ArticleDOI
TL;DR: The role of HIFs in the function of innate and adaptive immune cells inHypoxia, with a focus on how hypoxia modulates immunometabolism, is discussed.
Abstract: Hypoxia is a hallmark of inflamed, infected or damaged tissue, and the adaptation to inadequate tissue oxygenation is regulated by hypoxia-inducible factors (HIFs). HIFs are key mediators of the cellular response to hypoxia, but they are also associated with pathological stress such as inflammation, bacteriological infection or cancer. In addition, HIFs are central regulators of many innate and adaptive immunological functions, including migration, antigen presentation, production of cytokines and antimicrobial peptides, phagocytosis as well as cellular metabolic reprogramming. A characteristic feature of immune cells is their ability to infiltrate and operate in tissues with low level of nutrients and oxygen. The objective of this article is to discuss the role of HIFs in the function of innate and adaptive immune cells in hypoxia, with a focus on how hypoxia modulates immunometabolism.

119 citations


Journal ArticleDOI
TL;DR: The present review establishes an intimate link between NFκB and BET signaling, at least via BRD4, using the inflammatory response and cancer cell signaling as study models and discusses the potential of BET inhibitors for relief of aberrantNFκB signaling in cancer, focusing on non-histone, acetyl-lysine binding functions.
Abstract: NFκB (Nuclear Factor-κ-light-chain-enhancer of activated B cells) signaling elicits global transcriptional changes by activating cognate promoters and through genome-wide remodeling of cognate regulatory elements called "super enhancers". BET (Bromodomain and Extra-Terminal domain) protein family inhibitor studies have implicated BET protein member BRD4 and possibly other BET proteins in NFκB-dependent promoter and super-enhancer modulation. Members of the BET protein family are known to bind acetylated chromatin to facilitate access by transcriptional regulators to chromatin, as well as to assist the activity of transcription elongation complexes via CDK9/pTEFb. BET family member BRD4 has been shown to bind non-histone proteins and modulate their activity. One such protein is RELA, the NFκB co-activator. Specifically, BRD4 binds acetylated RELA, which increases its transcriptional transactivation activity and stability in the nucleus. In aggregate, this establishes an intimate link between NFκB and BET signaling, at least via BRD4. The present review provides a brief overview of the structure and function of BET family proteins and then examines the connections between NFκB and BRD4 signaling, using the inflammatory response and cancer cell signaling as study models. We also discuss the potential of BET inhibitors for relief of aberrant NFκB signaling in cancer, focusing on non-histone, acetyl-lysine binding functions.

116 citations


Journal ArticleDOI
TL;DR: All the studied leaves possess anti-inflammatory properties at different levels, and this could be due to the differences in the composition and concentration of bioactive compounds.
Abstract: The study investigated the anti-inflammatory activity of the hydro methanolic extract of six leafy vegetables, namely Cassia auriculata, Passiflora edulis, Sesbania grandiflora, Olax zeylanica, Gymnema lactiferum, and Centella asiatica. The anti-inflammatory activity of methanolic extracts of leafy vegetables was evaluated using four in vitro-based assays: hemolysis inhibition, proteinase inhibition, protein denaturation inhibition, and lipoxygenase inhibition. Results showed that the percent inhibition of hemolysis from these leaf extracts (25–100 µg/mL dry weight basis (DW)) was within the range from 5.4% to 14.9%, and the leaves of P. edulis and O. zeylanica showed a significantly higher (p < 0.05) inhibition levels. Percent inhibition of protein denaturation of these leafy types was within the range of 36.0–61.0%, and the leaf extract of C. auriculata has exhibited a significantly higher (p < 0.05) inhibition level. Proteinase inhibitory activity of these leaf extracts was within the range of 20.2–25.9%. The lipoxygenase inhibition was within the range of 3.7–36.0%, and the leaf extract of G. lactiferum showed an improved ability to inhibit lipoxygenase activity. In conclusion, results revealed that all the studied leaves possess anti-inflammatory properties at different levels, and this could be due to the differences in the composition and concentration of bioactive compounds.

113 citations


Journal ArticleDOI
TL;DR: This review will highlight recent proof-of-principle studies that have utilized short cell-penetrating peptides to improve nucleic acid delivery and discuss the prospects for translation of this approach for clinical application.
Abstract: The promise of nucleic acid based oligonucleotides as effective genetic therapies has been held back by their low bioavailability and poor cellular uptake to target tissues upon systemic administration. One such strategy to improve upon delivery is the use of short cell-penetrating peptides (CPPs) that can be either directly attached to their cargo through covalent linkages or through the formation of noncovalent nanoparticle complexes that can facilitate cellular uptake. In this review, we will highlight recent proof-of-principle studies that have utilized both of these strategies to improve nucleic acid delivery and discuss the prospects for translation of this approach for clinical application.

95 citations


Journal ArticleDOI
TL;DR: Results from genetic experiments and chemical activators of endoplasmic reticulum (ER) stress that suggest a link to the cytosolic inhibitor of NF-κB (IκB)α degradation pathway show that the UPR affects this major control point of NF -κB activation through several mechanisms.
Abstract: Stressful conditions occuring during cancer, inflammation or infection activate adaptive responses that are controlled by the unfolded protein response (UPR) and the nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. These systems can be triggered by chemical compounds but also by cytokines, toll-like receptor ligands, nucleic acids, lipids, bacteria and viruses. Despite representing unique signaling cascades, new data indicate that the UPR and NF-κB pathways converge within the nucleus through ten major transcription factors (TFs), namely activating transcription factor (ATF)4, ATF3, CCAAT/enhancer-binding protein (CEBP) homologous protein (CHOP), X-box-binding protein (XBP)1, ATF6α and the five NF-κB subunits. The combinatorial occupancy of numerous genomic regions (enhancers and promoters) coordinates the transcriptional activation or repression of hundreds of genes that collectively determine the balance between metabolic and inflammatory phenotypes and the extent of apoptosis and autophagy or repair of cell damage and survival. Here, we also discuss results from genetic experiments and chemical activators of endoplasmic reticulum (ER) stress that suggest a link to the cytosolic inhibitor of NF-κB (IκB)α degradation pathway. These data show that the UPR affects this major control point of NF-κB activation through several mechanisms. Taken together, available evidence indicates that the UPR and NF-κB interact at multiple levels. This crosstalk provides ample opportunities to fine-tune cellular stress responses and could also be exploited therapeutically in the future.

89 citations


Journal ArticleDOI
TL;DR: This review will focus on the spectrum of adenoviral infections in humans, which can occur in immunocompromised patients and less frequently in the healthy.
Abstract: Adenoviridae is a family of double-stranded DNA viruses that are a significant cause of upper respiratory tract infections in children and adults Less commonly, the adenovirus family can cause a variety of gastrointestinal, ophthalmologic, genitourinary, and neurologic diseases Most adenovirus infections are self-limited in the immunocompetent host and are treated with supportive measures Fatal infections can occur in immunocompromised patients and less frequently in the healthy Adenoviral vectors are being studied for novel biomedical applications including gene therapy and immunization In this review we will focus on the spectrum of adenoviral infections in humans

88 citations


Journal ArticleDOI
TL;DR: The relationship between PDT and carcinogenesis: the eruptive appearance of squamous cell carcinoma in previously treated areas has been correlated to a condition of local and/or systemic immunosuppression or to the selection of PDT-resistant SCC.
Abstract: Photodynamic Therapy (PDT) is a non-invasive treatment successfully used for neoplastic, inflammatory and infectious skin diseases. One of its strengths is represented by the high safety profile, even in elderly and/or immuno-depressed subjects. PDT, however, may induce early and late onset side effects. Erythema, pain, burns, edema, itching, desquamation, and pustular formation, often in association with each other, are frequently observed in course of exposure to the light source and in the hours/days immediately after the therapy. In particular, pain is a clinically relevant short-term complication that also reduces long-term patient satisfaction. Rare complications are urticaria, contact dermatitis at the site of application of the photosensitizer, and erosive pustular dermatosis. Debated is the relationship between PDT and carcinogenesis: the eruptive appearance of squamous cell carcinoma (SCC) in previously treated areas has been correlated to a condition of local and/or systemic immunosuppression or to the selection of PDT-resistant SCC. Here we review the literature, with particular emphasis to the pathogenic hypotheses underlying these observations.

Journal ArticleDOI
TL;DR: Important considerations for the use of CRISPR/Cas9 in therapeutic settings and major challenges that will need to be addressed prior to its clinical translation for a complex and polygenic disease such as cancer are discussed.
Abstract: Cancer is the second leading cause of death globally and remains a major economic and social burden. Although our understanding of cancer at the molecular level continues to improve, more effort is needed to develop new therapeutic tools and approaches exploiting these advances. Because of its high efficiency and accuracy, the CRISPR-Cas9 genome editing technique has recently emerged as a potentially powerful tool in the arsenal of cancer therapy. Among its many applications, CRISPR-Cas9 has shown an unprecedented clinical potential to discover novel targets for cancer therapy and to dissect chemical-genetic interactions, providing insight into how tumours respond to drug treatment. Moreover, CRISPR-Cas9 can be employed to rapidly engineer immune cells and oncolytic viruses for cancer immunotherapeutic applications. Perhaps more importantly, the ability of CRISPR-Cas9 to accurately edit genes, not only in cell culture models and model organisms but also in humans, allows its use in therapeutic explorations. In this review, we discuss important considerations for the use of CRISPR/Cas9 in therapeutic settings and major challenges that will need to be addressed prior to its clinical translation for a complex and polygenic disease such as cancer.

Journal ArticleDOI
TL;DR: Significant changes are needed in the drug approval process to promote the cocktail AO approach, because both exons 6 and 8 need to be skipped to restore the reading frame in dystrophic dogs and the current drug approval system is not designed to evaluate such circumstances.
Abstract: Duchenne muscular dystrophy (DMD) is a lethal disorder caused by mutations in the DMD gene. Antisense-mediated exon-skipping is a promising therapeutic strategy that makes use of synthetic nucleic acids to skip frame-disrupting exon(s) and allows for short but functional protein expression by restoring the reading frame. In 2016, the U.S. Food and Drug Administration (FDA) approved eteplirsen, which skips DMD exon 51 and is applicable to approximately 13% of DMD patients. Multiple exon skipping, which is theoretically applicable to 80–90% of DMD patients in total, have been demonstrated in animal models, including dystrophic mice and dogs, using cocktail antisense oligonucleotides (AOs). Although promising, current drug approval systems pose challenges for the use of a cocktail AO. For example, both exons 6 and 8 need to be skipped to restore the reading frame in dystrophic dogs. Therefore, the cocktail of AOs targeting these exons has a combined therapeutic effect and each AO does not have a therapeutic effect by itself. The current drug approval system is not designed to evaluate such circumstances, which are completely different from cocktail drug approaches in other fields. Significant changes are needed in the drug approval process to promote the cocktail AO approach.

Journal ArticleDOI
TL;DR: Evidence is examined that the SCF/CD117 signaling axis may contribute to the control of cancer progression through the regulation of stemness and resistance to tyrosine kinase inhibitors.
Abstract: Metastasis is the primary cause of cancer patient morbidity and mortality, but due to persisting gaps in our knowledge, it remains untreatable. Metastases often occur as patient tumors progress or recur after initial therapy. Tumor recurrence at the primary site may be driven by a cancer stem-like cell or tumor progenitor cell, while recurrence at a secondary site is driven by metastatic cancer stem cells or metastasis-initiating cells. Ongoing efforts are aimed at identifying and characterizing these stem-like cells driving recurrence and metastasis. One potential marker for the cancer stem-like cell subpopulation is CD117/c-kit, a tyrosine kinase receptor associated with cancer progression and normal stem cell maintenance. Further, activation of CD117 by its ligand stem cell factor (SCF; kit ligand) in the progenitor cell niche stimulates several signaling pathways driving proliferation, survival, and migration. This review examines evidence that the SCF/CD117 signaling axis may contribute to the control of cancer progression through the regulation of stemness and resistance to tyrosine kinase inhibitors.

Journal ArticleDOI
TL;DR: This review will focus on VHL-mediated signaling pathways involving the latest identified substrates/binding partners, including N-Myc downstream-regulated gene 3 (NDRG3), AKT, and G9a, etc., and their physiological roles in hypoxia signaling and cancer.
Abstract: Von Hippel-Lindau (VHL) is an important tumor suppressor that is lost in the majority of clear cell carcinoma of renal cancer (ccRCC). Its regulatory pathway involves the activity of E3 ligase, which targets hypoxia inducible factor α (including HIF1α and HIF2α) for proteasome degradation. In recent years, emerging literature suggests that VHL also possesses other HIF-independent functions. This review will focus on VHL-mediated signaling pathways involving the latest identified substrates/binding partners, including N-Myc downstream-regulated gene 3 (NDRG3), AKT, and G9a, etc., and their physiological roles in hypoxia signaling and cancer. We will also discuss the crosstalk between VHL and NF-κB signaling. Lastly, we will review the latest findings on targeting VHL signaling in cancer.

Journal ArticleDOI
TL;DR: The extent to which immune cells can be detected within the tumor microenvironment, as well as their prognostic role and relationship with the microbiome, are discussed, with an emphasis on TNBC.
Abstract: Breast cancer is a very heterogeneous disease, both at a molecular and a histological level. Five intrinsic subtypes were initially identified—Luminal-A, Luminal-B, HER2+, Triple negative/basal like (TNBC) and normal like—subsequently expanded to seven (Basal-like-1 and 2, mesenchymal, mesenchymal stem-like, luminal androgen receptor, immuno-modulatory and unstable). Although genetic and epigenetic changes are key pathogenic events, the immune system plays a substantial role in promoting progression and metastasis. This review will discuss the extent to which immune cells can be detected within the tumor microenvironment, as well as their prognostic role and relationship with the microbiome, with an emphasis on TNBC.

Journal ArticleDOI
TL;DR: It is proposed that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-mi RNA networks in specific cancer types can contribute to the further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Abstract: The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.

Journal ArticleDOI
TL;DR: Overexpression data of the NF-κB subunits RELA, RELB, and c-REL as well as of their upstream kinase inhibitor, namely inhibitor of κB kinases (IKK), in different human cancers, assessed by database mining are argued against a universal mechanism of cancer-mediated activation and suggest a much more elaborated mode of NF-kkB regulation.
Abstract: The transcription factor NF-κB is a key player in inflammation, cancer development, and progression. NF-κB stimulates cell proliferation, prevents apoptosis, and could promote tumor angiogenesis as well as metastasis. Extending the commonly accepted role of NF-κB in cancer formation and progression, different NF-κB subunits have been shown to be active and of particular importance in distinct types of cancer. Here, we summarize overexpression data of the NF-κB subunits RELA, RELB, and c-REL (referring to the v-REL, which is the oncogene of Reticuloendotheliosis virus strain T) as well as of their upstream kinase inhibitor, namely inhibitor of κB kinases (IKK), in different human cancers, assessed by database mining. These data argue against a universal mechanism of cancer-mediated activation of NF-κB, and suggest a much more elaborated mode of NF-κB regulation, indicating a tumor type-specific upregulation of the NF-κB subunits. We further discuss recent findings showing the diverse roles of NF-κB signaling in cancer development and metastasis in a subunit-specific manner, emphasizing their specific transcriptional activity and the role of autoregulation. While non-canonical NF-κB RELB signaling is described to be mostly present in hematological cancers, solid cancers reveal constitutive canonical NF-κB RELA or c-REL activity. Providing a linkage to cancer therapy, we discuss the recently described pivotal role of NF-κB c-REL in regulating cancer-targeting immune responses. In addition, current strategies and ongoing clinical trials are summarized, which utilize genome editing or drugs to inhibit the NF-κB subunits for cancer treatment.

Journal ArticleDOI
TL;DR: Novel biomarker approaches for the effective development of immune-oncology therapies are reviewed, highlighting the promise of the advances in next-generation gene expression profiling that allow biologic information to be efficiently organized and interpreted for a maximum predictive value at the individual patient level.
Abstract: The recent successes in the use of immunotherapy to treat cancer have led to a multiplicity of new compounds in development. Novel clinical-grade biomarkers are needed to guide the choice of these agents to obtain the maximal likelihood of patient benefit. Predictive biomarkers for immunotherapy differ from the traditional biomarkers used for targeted therapies: the complexity of the immune response and tumour biology requires a more holistic approach than the use of a single analyte biomarker. This paper reviews novel biomarker approaches for the effective development of immune-oncology therapies, highlighting the promise of the advances in next-generation gene expression profiling that allow biologic information to be efficiently organized and interpreted for a maximum predictive value at the individual patient level.

Journal ArticleDOI
TL;DR: A comprehensive look into clinical presentation, laboratory and instrumental investigations, diagnostic criteria, and therapeutic options for relapsing polychondritis is provided.
Abstract: Relapsing polychondritis is an immune-mediated systemic disease characterized by recurrent episodes of inflammation of cartilaginous and proteoglycan-rich tissues, resulting in progressive anatomical deformation and functional impairment of the involved structures. Auricular and nasal chondritis and/or polyarthritis represent the most common clinical features, but potentially all types of cartilage may be involved. Because of the pleomorphic nature of the disease, with non-specific symptoms at the onset, the diagnosis of relapsing polychondritis is often delayed. In this review article we provide a comprehensive look into clinical presentation, laboratory and instrumental investigations, diagnostic criteria, and therapeutic options.

Journal ArticleDOI
TL;DR: This critical review is a reflection on the lessons learnt from decades of research on the iridoid glycoside geniposide and its aglycone, genipin, which are currently used as gold standard reference compounds in cancer studies, and their effects on tumour development, cancer cell survival, and death are discussed.
Abstract: For centuries, plants have been exploited by mankind as sources of numerous cancer chemotherapeutic agents. Good examples of anticancer compounds of clinical significance today include the taxanes (e.g., taxol), vincristine, vinblastine, and the podophyllotoxin analogues that all trace their origin to higher plants. While all these drugs, along with the various other available therapeutic options, brought some relief in cancer management, a real breakthrough or cure has not yet been achieved. This critical review is a reflection on the lessons learnt from decades of research on the iridoid glycoside geniposide and its aglycone, genipin, which are currently used as gold standard reference compounds in cancer studies. Their effects on tumour development (carcinogenesis), cancer cell survival, and death, with particular emphasis on their mechanisms of actions, are discussed. Particular attention is also given to mechanisms related to the dual pro-oxidant and antioxidant effects of these compounds, the mitochondrial mechanism of cancer cell killing through reactive oxygen species (ROS), including that generated through the uncoupling protein-2 (UCP-2), the inflammatory mechanism, and cell cycle regulation. The implications of various studies for the evaluation of glycosidic and aglycone forms of natural products in vitro and in vivo through pharmacokinetic scrutiny are also addressed.

Journal ArticleDOI
TL;DR: This review article catalogs NF-κB activating genetic mutations and microenvironmental cues associated with multiple myeloma, and proposes that mechanistic understanding of NF-kkB deregulations may provide for improved therapeutic and prognostic tools in multipleMyeloma.
Abstract: Multiple myeloma(MM), an incurable plasma cell cancer, represents the second most prevalent hematological malignancy. Deregulated activity of the nuclear factor kappaB (NF-κB) family of transcription factors has been implicated in the pathogenesis of multiple myeloma. Tumor microenvironment-derived cytokines and cancer-associated genetic mutations signal through the canonical as well as the non-canonical arms to activate the NF-κB system in myeloma cells. In fact, frequent engagement of both the NF-κB pathways constitutes a distinguishing characteristic of myeloma. In turn, NF-κB signaling promotes proliferation, survival and drug-resistance of myeloma cells. In this review article, we catalog NF-κB activating genetic mutations and microenvironmental cues associated with multiple myeloma. We then describe how the individual canonical and non-canonical pathways transduce signals and contribute towards NF-κB -driven gene-expressions in healthy and malignant cells. Furthermore, we discuss signaling crosstalk between concomitantly triggered NF-κB pathways, and its plausible implication for anomalous NF-κB activation and NF-κB driven pro-survival gene-expressions in multiple myeloma. Finally, we propose that mechanistic understanding of NF-κB deregulations may provide for improved therapeutic and prognostic tools in multiple myeloma.

Journal ArticleDOI
TL;DR: The biogenesis, composition, and relationship of exosomes with non-viral microbial infections including gram-negative bacteria, gram-positive bacteria, Leishmania and Trypanosoma cruzi are discussed.
Abstract: Exosomes are nanosized membrane microvesicles (30–100 nm) that have the capability to communicate intercellularly and transport cell components (i.e., miRNA, mRNA, proteins and DNA). Exosomes are found in nearly every cell type (i.e., mast cells, dendritic, tumor, and macrophages). There have been many studies that have shown the importance of exosome function as well as their unique packaging and targeting abilities. These characteristics make exosomes ideal candidates to act as biomarkers and therapeutics for disease. We will discuss the biogenesis, composition, and relationship of exosomes with non-viral microbial infections including gram-negative bacteria, gram-positive bacteria, Leishmania and Trypanosoma cruzi.

Journal ArticleDOI
TL;DR: The correlation between oral dysbiosis and both pancreatic cancer and liver cirrhotic diseases are described, as well as demonstrating the possible diagnostic and treatment modalities, relying on the oral microbiota, itself, as prospective, simple, applicable non-invasive approaches to patients, by focusing on the state of the art.
Abstract: The human body is naturally colonized by a huge number of different commensal microbial species, in a relatively stable equilibrium. When this microbial community undergoes dysbiosis at any part of the body, it interacts with the innate immune system and results in a poor health status, locally or systemically. Research studies show that bacteria are capable of significantly influencing specific cells of the immune system, resulting in many diseases, including a neoplastic response. Amongst the multiple different types of diseases, pancreatic cancer and liver cirrhosis were significantly considered in this paper, as they are major fatal diseases. Recently, these two diseases were shown to be associated with increased or decreased numbers of certain oral bacterial species. These findings open the way for a broader perception and more specific investigative studies, to better understand the possible future treatment and prevention. This review aims to describe the correlation between oral dysbiosis and both pancreatic cancer and liver cirrhotic diseases, as well as demonstrating the possible diagnostic and treatment modalities, relying on the oral microbiota, itself, as prospective, simple, applicable non-invasive approaches to patients, by focusing on the state of the art. PubMed was electronically searched, using the following key words: “oral microbiota” and “pancreatic cancer” (PC), “liver cirrhosis”, “systemic involvement”, and “inflammatory mediators”. Oral dysbiosis is a common problem related to poor oral or systemic health conditions. Oral pathogens can disseminate to distant body organs via the local, oral blood circulation, or pass through the gastrointestinal tract and enter the systemic circulation. Once oral pathogens reach an organ, they modify the immune response and stimulate the release of the inflammatory mediators, this results in a disease. Recent studies have reported a correlation between oral dysbiosis and the increased risk of pancreatic and liver diseases and provided evidence of the presence of oral pathogens in diseased organs. The profound impact that microbial communities have on human health, provides a wide domain towards precisely investigating and clearly understanding the mechanism of many diseases, including cancer. Oral microbiota is an essential contributor to health status and imbalance in this community was correlated to oral and systemic diseases. The presence of elevated numbers of certain oral bacteria, particularly P. gingivalis, as well as elevated levels of blood serum antibodies, against this bacterial species, was associated with a higher risk of pancreatic cancer and liver cirrhosis incidence. Attempts are increasingly directed towards investigating the composition of oral microbiome as a simple diagnostic approach in multiple diseases, including pancreatic and liver pathosis. Moreover, treatment efforts are concerned in the recruitment of microbiota, for remedial purposes of the aforementioned and other different diseases. Further investigation is required to confirm and clarify the role of oral microbiota in enhancing pancreatic and liver diseases. Improving the treatment modalities requires an exertion of more effort, especially, concerning the microbiome engineering and oral microbiota transplantation.

Journal ArticleDOI
TL;DR: This review covers the recent literature that seeks to create an improved platform to support laboratory Darwinism, one based on an artificially expanded genetic information system (AEGIS) that adds independently replicating nucleotide “letters” to the evolving “alphabet”.
Abstract: Directed evolution was first applied to diverse libraries of DNA and RNA molecules a quarter century ago in the hope of gaining technology that would allow the creation of receptors, ligands, and catalysts on demand. Despite isolated successes, the outputs of this technology have been somewhat disappointing, perhaps because the four building blocks of standard DNA and RNA have too little functionality to have versatile binding properties, and offer too little information density to fold unambiguously. This review covers the recent literature that seeks to create an improved platform to support laboratory Darwinism, one based on an artificially expanded genetic information system (AEGIS) that adds independently replicating nucleotide “letters” to the evolving “alphabet”.

Journal ArticleDOI
TL;DR: Breast cancer stem cells are driven by persistent activation of developmental pathways, such as Notch, Wnt, Hippo, and Hedgehog and new treatment strategies that are aimed at these pathways are in preclinical and clinical development.
Abstract: Breast cancer stem cells (BCSC) have been implicated in tumor initiation, progression, metastasis, recurrence, and resistance to therapy. The origins of BCSCs remain controversial due to tumor heterogeneity and the presence of such small side populations for study, but nonetheless, cell surface markers and their correlation with BCSC functionality continue to be identified. BCSCs are driven by persistent activation of developmental pathways, such as Notch, Wnt, Hippo, and Hedgehog and new treatment strategies that are aimed at these pathways are in preclinical and clinical development.

Journal ArticleDOI
TL;DR: This review describes the different signaling pathways in healthy and diseased hepatocytes, also highlighting the beneficial role of adiponectin in autophagy activation and hepatic regeneration.
Abstract: In the liver, adiponectin regulates both glucose and lipid metabolism and exerts an insulin-sensitizing effect. The binding of adiponectin with its specific receptors induces the activation of a proper signaling cascade that becomes altered in liver pathologies. This review describes the different signaling pathways in healthy and diseased hepatocytes, also highlighting the beneficial role of adiponectin in autophagy activation and hepatic regeneration.

Journal ArticleDOI
TL;DR: The potential mechanisms underlying hypoxia-induced transcriptional repression responses are discussed, including HIF-dependent and independent mechanisms as well as the potential roles of dioxygenases with functions at the nucleosome and DNA level.
Abstract: Hypoxia or reduced oxygen availability has been studied extensively for its ability to activate specific genes. Hypoxia-induced gene expression is mediated by the HIF transcription factors, but not exclusively so. Despite the extensive knowledge about how hypoxia activates genes, much less is known about how hypoxia promotes gene repression. In this review, we discuss the potential mechanisms underlying hypoxia-induced transcriptional repression responses. We highlight HIF-dependent and independent mechanisms as well as the potential roles of dioxygenases with functions at the nucleosome and DNA level. Lastly, we discuss recent evidence regarding the involvement of transcriptional repressor complexes in hypoxia.

Journal ArticleDOI
TL;DR: Initial analysis of patients with gastroesophageal carcinoma demonstrates that the ratio of progression-free survival (PFS) on molecular profile (MP)-based treatment to PFS on treatment prior to molecular profiling exceeds 1.3, suggesting the potential value of MP in guiding selection of individualized therapy.
Abstract: Palliative chemotherapy is the mainstay of treatment of advanced gastric carcinoma (GC). Monoclonal antibodies including trastuzumab, ramucirumab, and pembrolizumab have been shown to provide additional benefits. However, the clinical outcomes are often unpredictable and they can vary widely among patients. Currently, no biomarker is available for predicting treatment response in the individual patient except human epidermal growth factor receptor 2 (HER2) amplification and programmed death-ligand 1 (PD-L1) expression for effectiveness of trastuzumab and pembrolizumab, respectively. Multi-platform molecular analysis of cancer, including GC, may help identify predictive biomarkers to guide selection of therapeutic agents. Molecular classification of GC by The Cancer Genome Atlas Research Network and the Asian Cancer Research Group is expected to identify therapeutic targets and predictive biomarkers. Complementary to molecular characterization of GC is molecular profiling by expression analysis and genomic sequencing of tumor DNA. Initial analysis of patients with gastroesophageal carcinoma demonstrates that the ratio of progression-free survival (PFS) on molecular profile (MP)-based treatment to PFS on treatment prior to molecular profiling exceeds 1.3, suggesting the potential value of MP in guiding selection of individualized therapy. Future strategies aiming to integrate molecular classification and profiling of tumors with therapeutic agents for achieving the goal of personalized treatment of GC are indicated.

Journal ArticleDOI
TL;DR: The various functions of ubiquitin in NF-κB signaling are examined and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF- κB regulated cellular processes are examined.
Abstract: The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.