scispace - formally typeset
Search or ask a question

Showing papers in "Canadian Journal of Physiology and Pharmacology in 2006"


Journal ArticleDOI
TL;DR: The Na+/H+ exchanger is involved in a variety of complex physiological and pathological events that include regulation of intracellular pH, cell movement, heart disease, and cancer.
Abstract: In mammalian eukaryotic cells, the Na+/H+ exchanger is a family of membrane proteins that regulates ions fluxes across membranes. Plasma membrane isoforms of this protein extrude 1 intracellular pr...

211 citations


Journal ArticleDOI
TL;DR: A survey review that summarizes the key actions of microglial factors in cerebral ischemia including complement proteins, chemokines, pro-inflammatory cytokines, neurotrophic factors, hormones, and proteinases, as well several important messenger molecules that play a part in how these factors respond to extracellular signals during ischemic injuries.
Abstract: The precise role of microglia in stroke and cerebral ischemia has been the subject of debate for a number of years. Microglia are capable of synthesizing numerous soluble and membrane-bound biomolecules, some known to be neuroprotective, some neurotoxic, whereas others have less definitive bioactivities. The molecular mechanisms through which microglia activate these molecules have thus become an important area of ischemia research. Here we provide a survey review that summarizes the key actions of microglial factors in cerebral ischemia including complement proteins, chemokines, pro-inflammatory cytokines, neurotrophic factors, hormones, and proteinases, as well several important messenger molecules that play a part in how these factors respond to extracellular signals during ischemic injuries. We also provide some new perspectives on how microglial intracellular signaling may contribute to the seemingly contradictory roles of several microglial effector molecules.

191 citations


Journal ArticleDOI
TL;DR: There is compelling evidence for a novel intracrine mode of genomic regulation by GPCRs that implies either the endocytosis and nuclear translocation of peripheral-liganded G PCR and (or) the activation of nuclearly located GPCR by endogenously produced, nonsecreted ligands.
Abstract: G-protein-coupled receptors (GPCRs) comprise a wide family of monomeric heptahelical glycoproteins that recognize a broad array of extracellular mediators including cationic amines, lipids, peptide...

163 citations


Journal ArticleDOI
TL;DR: Understanding the molecular basis of insulin resistance can prevent a cohort of systemic disorders—including dyslipidemia, hypertension, cardiovascular disease, and female infertility—and their inevitable progression to type 2 diabetes.
Abstract: Diabetes mellitus is a complex disorder that arises from various causes, including dysregulated glucose sensing and impaired insulin secretion (maturity onset diabetes of youth, MODY), autoimmune-m...

155 citations


Journal ArticleDOI
TL;DR: The cellular biological function of the ubiquitin-proteasome pathway as a major intracellular protein degradation pathway, and as an important modulator for the regulation of many fundamental cellu... as mentioned in this paper.
Abstract: The cellular biological function of the ubiquitin–proteasome pathway as a major intracellular protein degradation pathway, and as an important modulator for the regulation of many fundamental cellu...

151 citations


Journal ArticleDOI
TL;DR: It is demonstrated that BCRP is localized to the syncytiotrophoblast of the placenta and in some fetal blood vessels within the placasa.
Abstract: Breast cancer resistance protein, BCRP, is a multidrug resistance protein that is highly expressed in the human placenta. In cancer tissues, this protein actively extrudes a wide variety of chemically and structurally unrelated chemotherapeutic drugs and other compounds. Studies in mice have shown that in the absence of BCRP activity in the placenta, there is a 2-fold increase in the uptake in BCRP substrates into fetus. This suggests that in the placenta, BCRP extrudes compounds that would otherwise cross the syncytiotrophoblast cells into fetal circulation. The purpose of this study was to examine the expression and localization of BCRP in the human placenta throughout gestation. Tissues from 6–13, 16–19, 24–29, 32–35, and 38–41 weeks of gestation were used. Real time RT-PCR analysis demonstrated that the mRNA levels of BCRP in the placenta do not change significantly as gestation progressed. However, Western blot analysis revealed that the protein levels increased towards the end of gestation. We demon...

122 citations


Journal ArticleDOI
TL;DR: It is proposed that elevated methylglyoxal level and resulting protein glycation and ROS production may be the upstream links in the chain reaction leading to the development of hypertension.
Abstract: Pathogenic mechanisms for essential hypertension are unclear despite striking efforts from numerous research teams over several decades. Increased production of reactive oxygen species (ROS) has been associated with the development of hypertension and the role of ROS in hypertension has been well documented in recent years. In this context, it is important to better understand pathways and triggering factors for increased ROS production in hypertension. This review draws a causative linkage between elevated methylglyoxal level, methylglyoxal-induced production of ROS, and advanced glycation end products in the development of hypertension. It is proposed that elevated methylglyoxal level and resulting protein glycation and ROS production may be the upstream links in the chain reaction leading to the development of hypertension.

117 citations


Journal ArticleDOI
TL;DR: Current information on the way insulin downregulates and upregulates gene transcription is presented, using as examples of downregulation phosphoenolpyruvate carboxykinase (PEPCK) and insulin-like growth factor binding protein 1 (IGFBP-1) genes and of upregulation the fatty acid synthase and malic enzyme genes.
Abstract: Insulin, after binding to its receptor, regulates many cellular processes and the expression of several genes. For a subset of genes, insulin exerts a negative effect on transcription; for others, the effect is positive. Insulin controls gene transcription by modifying the binding of transcription factors on insulin-response elements or by regulating their transcriptional activities. Different insulin-signaling cascades have been characterized as mediating the insulin effect on gene transcription. In this review, we analyze recent data on the molecular mechanisms, mostly in the liver, through which insulin exerts its effect. We first focus on the key transcription factors (viz. Foxo, sterol-response-element-binding protein family (SREBP), and Sp1) involved in the regulation of gene transcription by insulin. We then present current information on the way insulin downregulates and upregulates gene transcription, using as examples of downregulation phosphoenolpyruvate carboxykinase (PEPCK) and insulin-like growth factor binding protein 1 (IGFBP-1) genes and of upregulation the fatty acid synthase and malic enzyme genes. The last part of the paper focuses on the signaling cascades activated by insulin in the liver, leading to the modulation of gene transcription.

115 citations


Journal ArticleDOI
TL;DR: The present study assesses the in vitro anti-diabetic potential of extracts from the 8 most promising plants to emerge from the ethnobotanical study of Cree medicinal plants and concludes that the Cree pharmacopoeia contains several plants with significant anti-Diabetic potential.
Abstract: Type II diabetes is a major health problem worldwide. Some populations, such as aboriginal peoples, are particularly at risk for this disease. In the Cree Nation of Quebec, Canada, prevalence in ad...

112 citations


Journal ArticleDOI
TL;DR: The goal of this review is to evaluate the current status of knowledge regarding the transcriptional control of versican gene regulation by focusing on the signal transduction pathways, promoter regions, cis-acting elements, and trans-factors that have been characterized.
Abstract: Versican, a chondroitin sulfate proteoglycan, is one of the main components of the extracellular matrix, which provides a loose and hydrated matrix during key events in development and disease. Ver...

110 citations


Journal ArticleDOI
TL;DR: Results indicate that AGS-IV exerts protective effects against the progression of peripheral neuropathy in STZ-induced diabetes in rats through several interrelated mechanisms.
Abstract: Astragaloside IV (AGS-IV), a new glycoside of cycloartane-type triterpene isolated from the root of Astragalus membranaceus (Fisch.) Bunge, has been used experimentally for its potent immune-stimulating, anti-inflammatory, and antioxidative actions. A recent study has shown AGS-IV to be an aldose-reductase inhibitor and a free-radical scavenger. This study examined the effects of AGS-IV on motor nerve conduction velocity (MNCV), tailflick threshold temperature, biochemical indexes, and the histology of the sural nerve after diabetes was induced in rats with 75 mg/kg streptozotocin (STZ). AGS-IV (3, 6, 12 mg/kg, twice a day) was administered by oral gavage for 12 weeks after diabetes was induced. Compared with control (nondiabetic) rats, obvious changes in physiological behaviors and a significant reduction in sciatic MNCV in diabetic rats were observed after 12 weeks of STZ administration. Morphological analysis showed that AGS-IV suppressed a decrease in myelinated fiber area, an increase in myelinated f...

Journal ArticleDOI
TL;DR: Mechanisms on how nuclear PGE2, PAF, and LPA receptors activate gene transcription and nuclear localization pathways are presented and intracellular GPCRs constitute a distinctive mode of action for gene regulation are presented.
Abstract: Prostaglandins (PGs), platelet-activating factor (PAF), and lysophosphatidic acid (LPA) are ubiquitous lipid mediators that play important roles in inflammation, cardiovascular homeostasis, and immunity and are also known to modulate gene expression of specific pro-inflammatory genes. The mechanism of action of these lipids is thought to be primarily dependent on their specific plasma membrane receptors belonging to the superfamily of G-protein-coupled receptors (GPCR). Increasing evidence suggests the existence of a functional intracellular GPCR population. It has been proposed that immediate effects are mediated via cell surface receptors whereas long-term responses are dependent upon intracellular receptor effects. Indeed, receptors for PAF, LPA, and PGE2 (specifically EP1, EP3, and EP4) localize at the cell nucleus of cerebral microvascular endothelial cells of newborn pigs, rat hepatocytes, and cells overexpressing each receptor. Stimulation of isolated nuclei with these lipids reveals biological fun...

Journal ArticleDOI
TL;DR: The findings describe a novel mechanism whereby apical LPS may disrupt epithelial tight junctional ZO-1 and barrier function in a caspase-3-dependent fashion.
Abstract: The mechanisms responsible for microbially induced epithelial apoptosis and increased intestinal permeability remain unclear. This study assessed whether purified bacterial lipopolysaccharide (LPS) increases epithelial apoptosis and permeability and whether these changes are dependent on caspase-3 activation. In nontumorigenic epithelial monolayers, Escherichia coli O26:B6 LPS increased apoptosis, as shown by nuclear breakdown, caspase-3 activation, and PARP cleavage, and induced disruption of tight junctional ZO-1. Apical, but not basolateral, exposure to LPS increased epithelial permeability. Addition of a caspase-3 inhibitor abolished the effects of LPS. The findings describe a novel mechanism whereby apical LPS may disrupt epithelial tight junctional ZO-1 and barrier function in a caspase-3-dependent fashion.

Journal ArticleDOI
TL;DR: In this article, the authors showed that passive smoking impairs vascular endothelial function and induces oxidative stress in humans, however, in most of the previous human data regarding tobacco-induced pa...
Abstract: Recent studies have shown that passive smoking impairs vascular endothelial function and induces oxidative stress in humans. However, in most of the previous human data regarding tobacco-induced pa...

Journal ArticleDOI
TL;DR: This work characterized the transport properties of hPepT1 towards a spectrum of muramyl peptides, including Nod1-activating molecules, and demonstrated that hPEPT1 transports MDP but no other Nod2-Activating molecule.
Abstract: Muramyl peptides derived from bacterial peptidoglycan are detected intracellularly by Nod1 and Nod2, 2 members of the newly characterized nod-like receptor (NLR) family of pattern recognition molecules. In the absence of bacterial invasion into the host cytosolic compartment, it remains unclear whether muramyl peptides can cross the plasma membrane and localize into the cytosol. We have recently demonstrated that the plasma membrane transporter, hPepT1, was able to efficiently translocate muramyl dipeptide (MDP), a specific Nod2-activating molecule, into host cells. We aimed to characterize the transport properties of hPepT1 towards a spectrum of muramyl peptides, including Nod1-activating molecules. To do so, we designed an original procedure based on the ectopic expression of hPepT1 in oocytes from Xenopus laevis. Our results demonstrated that hPepT1 transports MDP but no other Nod2-activating molecule. Moreover, we observed that Nod1-stimulating muramyl peptides were not transported by hPepT1. Since hP...

Journal ArticleDOI
TL;DR: This study provides a molecular basis for the use of morroniside and loganin in the early stages of diabetic nephropathy by suggesting that morron iside and Loganin regulate MC growth by preventing oxidative stress.
Abstract: Advanced glycation end products (AGE) are involved in the alterations of renal mesangial cell (MCs) growth, a feature of early stages of diabetic nephropathy (DN). We postulate that morroniside and loganin, 2 components extracted from Cornus officinalis, may ameliorate the detrimental effects of AGE-induced MCs proliferation by preventing oxidative stress. Rat MCs cultured in AGE milieu were treated with morroniside and loganin. Results showed that morroniside and loganin inhibited AGE-induced MC proliferation as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Fluorescence microscopy revealed that the morroniside and loganin improved the morphological changes of MCs. Flow cytometric analysis showed that morroniside and loganin inhibited the cell cycle of rat MCs. Furthermore, the level of reactive oxygen species was significantly reduced, and the activities of superoxide dismutase and glutathione peroxidase were markedly increased, whereas the level of malondialdehyd...

Journal ArticleDOI
TL;DR: It is thought that AMPK may be a major mediator of the health benefits of exercise in mitigating the development of obesity and age-onset diseases and can be considered to be the fat controller of the energy railroad.
Abstract: AMP-activated protein kinase plays an important role in the regulation of lipid metabolism in response to metabolic stress and energy demand. It is also under endocrine control. AMPK acts at multiple steps and has a central role controlling fatty acid, triglyceride, and cholesterol synthesis, as well as the oxidation of fatty acids through direct phosphorylation effects and the control of gene transcription. As such, it can be considered to be the fat controller of the energy railroad. It is thought that AMPK may be a major mediator of the health benefits of exercise in mitigating the development of obesity and age-onset diseases.

Journal ArticleDOI
TL;DR: The role neurotransmitters, which stimulate Go/i to activate a complex signaling network controlling neurite outgrowth, play in regeneration after neuronal injury is analyzed.
Abstract: Neurite outgrowth is a complex differentiation process stimulated by many neuronal growth factors and transmitters and by electrical activity. Among these stimuli are ligands for G-protein-coupled receptors (GPCR) that function as neurotransmitters. The pathways involved in GPCR-triggered neurite outgrowth are not fully understood. Many of these receptors couple to Galphao, one of the most abundant proteins in the neuronal growth cones. We have studied the Go signaling network involved in neurite outgrowth in Neuro2A cells. Galphao can induce neurite outgrowth. The CB1 cannabinoid receptor, a Go/i-coupled receptor expressed endogenously in Neuro2A cells, triggers neurite outgrowth by activating Rap1, which promotes the Galphao-stimulated proteasomal degradation of Rap1GAPII. CB1-receptor-mediated Rap1 activation leads to the activation of a signaling network that includes the small guanosine triphosphate (GTP)ases Ral and Rac, the protein kinases Src, and c-Jun N-terminal kinase (JNK), which converge onto the activation of signal transducer and activator of transcription 3 (Stat3), a key transcription factor that mediates the gene expression process of neurite outgrowth in Neuro2A cells. This review describes current findings from our laboratory and also discusses alternative pathways that Go/i might mediate to trigger neurite outgrowth. We also analyze the role neurotransmitters, which stimulate Go/i to activate a complex signaling network controlling neurite outgrowth, play in regeneration after neuronal injury.

Journal ArticleDOI
TL;DR: The findings that the aqueous extract of M. malabathricum possesses antinociceptive, anti-inflammatory, and antipyretic activities supports previous claims on its traditional uses to treat various ailments.
Abstract: The present study was carried out to establish the antinociceptive, anti-inflammatory, and antipyretic properties of the aqueous extract of Melastoma malabathricum leaves in experimental animals. T...

Journal ArticleDOI
TL;DR: A theory on how sex may regulate myocardial energy metabolism to affect disease susceptibility and progression will be presented, as well as a discussion of howsex may influence outcomes of experiments on isolated cardiomyocytes by epigenetic marking.
Abstract: In the past decade, increasing attention has been paid to the importance of sex in the etiology of cardiac dysfunction. While focus has been primarily on how sex modulates atherogenesis, it is becoming clear that sex is both a predictor of outcome and an independent risk factor for a number of other cardiac diseases. Animal models and human studies have begun to shed light on the mechanisms by which sex influences the function of cardiomyocytes in health and disease. This review will survey the current literature on cardiac diseases that are influenced by sex and discuss the intracellular mechanisms by which steroid sex hormones affect heart function. A theory on how sex may regulate myocardial energy metabolism to affect disease susceptibility and progression will be presented, as well as a discussion of how sex may influence outcomes of experiments on isolated cardiomyocytes by epigenetic marking.

Journal ArticleDOI
TL;DR: The results suggest that, similar to the plasma membrane, nuclear membranes possess channels, exchangers and receptors such as those for endothelin-1 and angiotensin II, and that the nucleus seems to be a cell within a cell.
Abstract: The action of several peptides and drugs is thought to be primarily dependent on their interactions with specific cell surface G-protein-coupled receptors and ionic transporters such as channels and exchangers. Recent development of 3-D confocal microscopy allowed several laboratories, including ours, to identify and study the localization of receptors, channels, and exchangers at the transcellular level of several cell types. Using this technique, we demonstrated in the nuclei of several types of cells the presence of Ca2+ channels as well as Na+–H+ exchanger and receptors such as endothelin-1 and angiotensin II receptors. Stimulation of these nuclear membrane G-protein-coupled receptors induced an increase of nuclear Ca2+. Our results suggest that, similar to the plasma membrane, nuclear membranes possess channels, exchangers and receptors such as those for endothelin-1 and angiotensin II, and that the nucleus seems to be a cell within a cell. This article will emphasize these findings.

Journal ArticleDOI
TL;DR: It is suggested that folic acid treatment can effectively inhibit Hcy-induced oxidative stress and inflammatory responses in macrophages, which may represent one of the mechanisms by which folic Acid supplementation exerts a protective effect in cardiovascular disorders.
Abstract: Folic acid supplementation is a promising approach for patients with cardiovascular diseases associated with hyperhomocysteinemia. We have demonstrated that homocysteine (Hcy) activates nuclear factor-kappaB (NF-kappaB), a transcription factor that plays an important role in inflammatory responses. The aim of the present study was to investigate the effect of folic acid on Hcy-induced NF-kappaB activation in macrophages. Hcy treatment (100 micromol/L) resulted in NF-kappaB activation and increased monocyte chemoattractant protein-1 (MCP-1) expression in THP-1 derived macrophages. Hcy-induced NF-kappaB activation was associated with a significant increase in the intracellular superoxide anion levels. There was a significant increase in phosphorylation and membrane translocation of NADPH oxidase p47phox subunit in Hcy-treated cells. Addition of folic acid (200 ng/mL) to the culture medium abolished NADPH oxidase-dependent superoxide anion generation in macrophages by preventing phosphorylation of p47phox subunit. Consequently, Hcy-induced NF-kappaB activation and MCP-1 expression was inhibited. Such an inhibitory effect of folic acid was independent of its Hcy-lowering ability. Taken together, these results suggest that folic acid treatment can effectively inhibit Hcy-induced oxidative stress and inflammatory responses in macrophages. This may represent one of the mechanisms by which folic acid supplementation exerts a protective effect in cardiovascular disorders.

Journal ArticleDOI
TL;DR: The physiology of osteoblasts, the involvement of different growth factors on bone development, and the effects of vanadium derivatives on the skeletal system of animal models and bone-related cells are reviewed.
Abstract: Vanadium is a trace element present in practically all cells in plants and animals. It exerts interesting actions in living systems. At pharmacological doses, vanadium compounds display relevant bi...

Journal ArticleDOI
TL;DR: The results suggest that calpain activation is an early event during HU in the soleus, and that the increases in calpain activity in both muscles are associated with a redistribution of activity from cytosolic to particulate fractions.
Abstract: The aims of this study were the following: (i) to determine whether activation of the Ca2+-activated protease, calpain, is an early event during hindlimb unweighting (HU) in skeletal muscle; and (ii) to assess whether calpain activity is greater during reweighting compared with HU alone. Rats were exposed to 12, 24, and 72 h, or 9 d of HU, followed by reweighting for 0, 12, or 24 h. Calpain activities were assayed for total, soluble, and particulate fractions. Total calpain activity was increased in the soleus at all HU time points, whereas activities were elevated in the gastrocnemius only after 9 d of HU. With reweighting, calpain activity remained elevated at all time points for both muscles. In general, reweighting the gastrocnemius increased its calpain activity more than during HU only, whereas reweighting the soleus did not produce additional increases in its calpain activity. The increases in calpain activity were associated with a proportional increase in activity of the particulate (membrane- an...

Journal ArticleDOI
TL;DR: E. kansui has antioxidative and antifatigue properties and can be given as prophylactic and therapeutic supplements for increasing antioxidant enzyme activities and preventing lipid peroxidation during strenuous exercise.
Abstract: The present study examined the effects of derivatives of galactosides and glucosides in a polysaccharide extract from Euphorbia kansui (Euphorbiaceae) on exercise-induced oxidative stress in mice. ...

Journal ArticleDOI
TL;DR: Agrobacterium is the only known bacterium capable of natural DNA transfer into a eukaryotic host and the genes transferred to host plants are contained on a T-DNA molecule, the transfer of which begins with its translocation from the bacterial cell to the host-cell cytoplasm.
Abstract: Agrobacterium is the only known bacterium capable of natural DNA transfer into a eukaryotic host. The genes transferred to host plants are contained on a T-DNA (transferred DNA) molecule, the transfer of which begins with its translocation, along with several effector proteins, from the bacterial cell to the host-cell cytoplasm. In the host cytoplasm, the T-complex is formed from a single-stranded copy of the T-DNA (T-strand) associated with several bacterial and host proteins and it is imported into the host nucleus via interactions with the host nuclear import machinery. Once inside the nucleus, the T-complex is most likely directed to the host genome by associating with histones. Finally, the chromatin-associated T-complex is uncoated from its escorting proteins prior to the conversion of the T-strand to a double-stranded form and its integration into the host genome.

Journal ArticleDOI
TL;DR: An etiological role of MG in hypertension development is proposed and it is shown that MG-induced vascular damage to the pathogenic process of hypertension is linked to increased cardiovascular risks.
Abstract: Hypertension is a life-threatening disease that is associated with increased cardiovascular risks. Causes and mechanisms for hypertension development remain poorly understood. Methylglyoxal (MG), a highly reactive molecule, is a metabolite of sugar. Increased circulation and tissue levels of MG have been documented not only in diabetes but also in hypertension. Many recent studies also link MG-induced vascular damage to the pathogenic process of hypertension. As such, an etiological role of MG in hypertension development is proposed.

Journal ArticleDOI
TL;DR: Preliminary data obtained in the laboratory suggest that knowledge-based work does not favor the same potential mass reducing effects as physical work, which is problematic for obesity prevention in the future.
Abstract: Physical activity promotes metabolic adaptations that improve body functionality and contribute to the prevention of some diseases. With respect to energy and fat balance, physical activity facilitates the equilibrium between energy intake and expenditure as well as between fat intake and fat oxidation. When combined with a healthy diet that favors satiety with a reduced energy intake, exercise can induce a substantial mass loss in obese individuals. However, even the impact of an exemplary lifestyle does not seem to have the potential to decrease body mass in obese individuals down to the mass range of lean people. Up to now, we have not been able to induce mass changes exceeding 12%-15% initial body mass in obese male subjects under tolerable exercise and dietary habits, and this moderate success was accompanied by modifications in appetite and energy expenditure susceptible to compromise subsequent mass stability. As described in this paper, many environmental factors can influence energy balance and the ability to lose body fat in response to a healthy diet and (or) physical activity program. Particular attention is given to preliminary data obtained in our laboratory that suggest that knowledge-based work does not favor the same potential mass reducing effects as physical work. In fact, the acute effects of knowledge-based work suggest that this work modality may be rather susceptible to promote a more pronounced positive energy balance compared with what we may expect from a sedentary relaxing activity. This is problematic for obesity prevention in the future since knowledge-based work now represents the main working modality in a context of modernity.

Journal ArticleDOI
TL;DR: TSP treatment to the diabetic animals resulted in a marked decrease in the plasma glucose levels and Trigonella treatment partially restored the altered expression of PK and PEPCK.
Abstract: Plasma glucose levels are maintained by a precise balance between glucose production and its use. Liver pyruvate kinase (PK) and phosphoenolpyruvate carboxykinase (PEPCK), 2 key enzymes of glycolysis and gluconeogenesis, respectively, play a crucial role in this glucose homeostasis along with skeletal muscle glucose transporter (GLUT4). In the diabetic state, this balance is disturbed owing to the absence of insulin, the principal factor controlling this regulation. In the present study, alloxan-diabetic animals having high glucose levels of more than 300 mmol/L have been taken and the administration of Trigonella seed powder (TSP) to the diabetic animals was assessed for its effect on the expression of PK and PEPCK in liver and GLUT4 distribution in skeletal muscle of alloxan-diabetic rats. TSP treatment to the diabetic animals resulted in a marked decrease in the plasma glucose levels. Trigonella treatment partially restored the altered expression of PK and PEPCK. TSP treatment also corrected the altera...

Journal ArticleDOI
TL;DR: This review will focus on the substrate specificities of PTP1B and TC-PTP and their roles in immune cell signaling, and will discuss some new data implicating PTP2B and T-cell PTP in myeloid development.
Abstract: It has recently been demonstrated that the protein tyrosine phosphatase (PTP) PTP1B and the T-cell PTP (TC-PTP) target several substrates involved in immune cell signaling. Recent data have furthered the view of these 2 PTP members as key regulators of the immune response. This review will focus on the substrate specificities of PTP1B and TC-PTP and their roles in immune cell signaling, and will discuss some new data implicating PTP1B and TC-PTP in myeloid development.