scispace - formally typeset
Search or ask a question

Showing papers in "Cellular and Molecular Neurobiology in 2007"


Journal ArticleDOI
TL;DR: The influence of pericytes on the BBB properties of brain endothelial cells may be as important as that of astrocytes and could be exploited in the construction of better BBB models.
Abstract: (1) The blood–brain barrier (BBB) characteristics of cerebral endothelial cells are induced by organ-specific local signals. Brain endothelial cells lose their phenotype in cultures without cross-talk with neighboring cells. (2) In contrast to astrocytes, pericytes, another neighboring cell of endothelial cells in brain capillaries, are rarely used in BBB co-culture systems. (3) Seven different types of BBB models, mono-culture, double and triple co-cultures, were constructed from primary rat brain endothelial cells, astrocytes and pericytes on culture inserts. The barrier integrity of the models were compared by measurement of transendothelial electrical resistance and permeability for the small molecular weight marker fluorescein. (4) We could confirm that brain endothelial monolayers in mono-culture do not form tight barrier. Pericytes induced higher electrical resistance and lower permeability for fluorescein than type I astrocytes in co-culture conditions. In triple co-culture models the tightest barrier was observed when endothelial cells and pericytes were positioned on the two sides of the porous filter membrane of the inserts and astrocytes at the bottom of the culture dish. (5) For the first time a rat primary culture based syngeneic triple co-culture BBB model has been constructed using brain pericytes beside brain endothelial cells and astrocytes. This model, mimicking closely the anatomical position of the cells at the BBB in vivo, was superior to the other BBB models tested. (6) The influence of pericytes on the BBB properties of brain endothelial cells may be as important as that of astrocytes and could be exploited in the construction of better BBB models.

349 citations


Journal ArticleDOI
TL;DR: The results of this study indicate that the local protein synthetic system plays an important role in mitochondrial function and the maintenance of the axon.
Abstract: (1) Axons contain numerous mRNAs and a local protein synthetic system that can be regulated independently of the cell body. (2) In this study, cultured primary sympathetic neurons were employed, to assess the effect of local protein synthesis blockade on axon viability and mitochondrial function. (3) Inhibition of local protein synthesis reduced newly synthesized axonal proteins by 65% and resulted in axon retraction after 6 h. Acute inhibition of local protein synthesis also resulted in a significant decrease in the membrane potential of axonal mitochondria. Likewise, blockade of local protein transport into the mitochondria by transfection of the axons with Hsp90 C-terminal domain decreased the mitochondrial membrane potential by 65%. Moreover, inhibition of the local protein synthetic system also reduced the ability of mitochondria to restore axonal levels of ATP after KCl-induced depolarization. (4) Taken together, these results indicate that the local protein synthetic system plays an important role in mitochondrial function and the maintenance of the axon.

93 citations


Journal ArticleDOI
TL;DR: The findings reinforce the protective role of this compound in some brain disorders, particularly those involving glutamate toxicity, however, the underlying mechanisms of these changes are not clear at the moment and it is necessary caution with its administration.
Abstract: Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenol present in grapes and red wine, which has antioxidant properties and a wide range of other biological effects. In this study, we investigated the effect of resveratrol, in a concentration range of 10–250 μM, on primary cortical astrocytes; evaluating cell morphology, parameters of glutamate metabolism such as glutamate uptake, glutamine synthetase activity and glutathione total content, and S100B secretion. Astrocyte cultures were prepared of cerebral cortex from neonate Wistar rats. Morphology was evaluated by phase-contrast microscopy and immunocytochemistry for glial fibrillary acidic protein (GFAP). Glutamate uptake was measured using l-[2,3-3H]glutamate. Glutamine synthetase and content of glutathione were measured by enzymatic colorimetric assays. S100B content was determined by ELISA. Typical polygonal morphology becomes stellated when astrocyte cultures were exposed to 250 μM resveratrol for 24 h. At concentration of 25 μM, resveratrol was able to increase glutamate uptake and glutathione content. Conversely, at 250 μM, resveratrol decreased glutamate uptake. Unexpectedly, resveratrol at this high concentration increased glutamine synthetase activity. Extracellular S100B increased from 50 μM upwards. Our findings reinforce the protective role of this compound in some brain disorders, particularly those involving glutamate toxicity. However, the underlying mechanisms of these changes are not clear at the moment and it is necessary caution with its administration because elevated levels of this compound could contribute to aggravate these conditions.

90 citations


Journal ArticleDOI
TL;DR: The present data suggest that the protective effects of LEV against pilocarpine-induced seizures can be mediated, at least in part, by reduction of lipid peroxidation and hippocampal oxidative stress.
Abstract: Oxidative stress has been implicated in a large number of human degenerative diseases, including epilepsy. Levetiracetam (LEV) is a new antiepileptic agent with broad-spectrum effects on seizures and animal models of epilepsy. Recently, it was demonstrated that the mechanism of LEV differs from that of conventional antiepileptic drugs. Objectifying to investigate if LEV mechanism of action involves antioxidant properties, lipid peroxidation levels, nitrite–nitrate formation, catalase activity, and glutathione (GSH) content were measured in adult mice brain. The neurochemical analyses were carried out in hippocampus of animals pretreated with LEV (200 mg/kg, i.p.) 60 min before pilocarpine-induced seizures (400 mg/kg, s.c.). The administration of alone pilocarpine, 400 mg/kg, s.c. (P400) produced a significant increase of lipid peroxidation level in hippocampus. LEV pretreatment was able to counteract this increase, preserving the lipid peroxidation level in normal value. P400 administration also produced increase in the nitrite–nitrate formation and catalase activity in hippocampus, beyond a decrease in GSH levels. LEV administration before P400 prevented the P400-induced alteration in nitrite–nitrate levels and preserved normal values of catalase activity in hippocampus. Moreover, LEV administration prevented the P400-induced loss of GSH in this cerebral area. The present data suggest that the protective effects of LEV against pilocarpine-induced seizures can be mediated, at least in part, by reduction of lipid peroxidation and hippocampal oxidative stress.

85 citations


Journal ArticleDOI
TL;DR: Cdk5 (roscovitine) and calpain (MDL28170) inhibitors reverted tau hyperphosphorylation and prevented neuronal death caused by Aβ1–40 and PrP106–126 and suggests that Cdk5 plays an active role in the pathogenesis of AD and PRE.
Abstract: Tau hyperphosphorylation, amyloid plaques, and neuronal death are major neuropathological features of Alzheimer’s disease (AD) and Prion-related encephalopathies (PRE). Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase, active in post-mitotic neurons, where it regulates survival and death pathways. Overactivation of Cdk5 is conferred by p25, a truncated fragment of the p35 activator formed upon calpain activation. Cdk5 deregulation causes abnormal phosphorylation of microtubule-associated protein tau, leading to neurodegeneration. In this work we investigated the involvement of Cdk5 in the neurodegeneration triggered by amyloid-beta (Aβ) and prion (PrP) peptides, the culprit agents of AD and PRE. As a work model, we used cultured rat cortical neurons treated with Aβ1–40 and PrP106–126 synthetic peptides. The obtained data show that apoptotic neuronal death caused by both the peptides was in part due to Cdk5 deregulation. After peptide treatment, p25 levels were significantly enhanced in a pattern consistent with the augment in calpain activity. Moreover, Aβ1–40 and PrP106–126 increased the levels of tau protein phosphorylated at Ser202/Thr205. Cdk5 (roscovitine) and calpain (MDL28170) inhibitors reverted tau hyperphosphorylation and prevented neuronal death caused by Aβ1–40 and PrP106–126. This study demonstrates, for the first time, that Cdk5 is involved in PrP-neurotoxicity. Altogether, our data suggests that Cdk5 plays an active role in the pathogenesis of AD and PRE.

65 citations


Journal ArticleDOI
TL;DR: The role of membrane environment in serotonin1A receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin2A receptors, and the ability to functionally solubilize the serotonin1B receptor.
Abstract: (1) The serotonin(1A) receptor is a G-protein coupled receptor involved in several cognitive, behavioral, and developmental functions. It binds the neurotransmitter serotonin and signals across the membrane through its interactions with heterotrimeric G-proteins. (2) Lipid-protein interactions in membranes play an important role in the assembly, stability, and function of membrane proteins. The role of membrane environment in serotonin(1A) receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin(1A) receptors, the ability to functionally solubilize the serotonin(1A) receptor, and the factors influencing the membrane organization of the serotonin(1A) receptor. (3) Recent developments involving the application of detergent-based and detergent-free approaches to understand the membrane organization of the serotonin(1A) receptor under conditions of ligand activation and modulation of membrane lipid content, with an emphasis on membrane cholesterol, are described.

64 citations


Journal ArticleDOI
TL;DR: It is suggested that long-term L-DOPA treatment results in significant loss of 5-HT in serotonergic and dopaminergic regions of the brain, and the imbalance of serotonin and dopamine formation may be the cause of overt cognitive, motor, and psychological functional aberrations seen in parkinsonian patients following prolonged L- DOPA treatment.
Abstract: (1) The treatment of choice for Parkinson's disease (PD) is 3,4-dihydroxyphenylalanine (L-DOPA) with peripheral decarboxylase inhibitor, but long-term therapy leads to motor and psychiatric complications. In the present study we investigated 5-hydroxytryptamine (5-HT) and dopamine concentrations in serotonergic and dopaminergic nuclei following chronic administration of L-DOPA to find whether the neurotransmitter synthesis in these brain areas are compensated. (2) Rats were administered L-DOPA (250 mg/kg) and carbidopa (25 mg/kg) daily for 59 and 60 days, and killed on the 60th day, respectively at 24 h and 30 min after the last dose. L-DOPA, norepinephrine, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), dopamine, homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in striatum, nucleus raphe dorsalis (NRD), nucleus accumbens (NAc), substantia nigra, cerebellum, and cortex employing HPLC-electrochemical procedure. (3) Prolonged treatment of L-DOPA caused depression in the animals as revealed in a forced swim test. Serotonin content was significantly decreased in all brain regions studied 30 min after long-term L-DOPA, except in NAc. The cortex and striatum showed lowered levels of this indoleamine 24 h after 59 doses of L-DOPA. Dopamine, HVA, and DOPAC concentrations were significantly higher in all the regions studied after 30 min, and in the cerebellum after 24 h of L-DOPA. The levels of DOPAC were elevated in all the brain areas studied 24 h after prolonged L-DOPA treatment. (4) The present results suggest that long-term L-DOPA treatment results in significant loss of 5-HT in serotonergic and dopaminergic regions of the brain. Furthermore, while L-DOPA metabolism per se was uninfluenced, dopamine synthesis was severely impaired in all the regions. The imbalance of serotonin and dopamine formation may be the cause of overt cognitive, motor, and psychological functional aberrations seen in parkinsonian patients following prolonged L-DOPA treatment.

64 citations


Journal ArticleDOI
TL;DR: The data demonstrate that V1bR and CRHR1 can form constitutive homo- and heterodimers and suggests that the heterodimerization does not influence the binding properties of these receptors.
Abstract: 1. Increasing evidence indicates that guanyl protein coupled receptors (GPCRs), including members of the vasopressin (VP) receptor family can act as homo- and heterodimers. Regulated expression and interaction of pituitary VP V1b receptor (V1bR) and corticotropin releasing hormone receptor type 1 (CRHR1) are critical for hypothalamic pituitary adrenal (HPA) axis adaptation, but it is unknown whether this involves physical interaction between these receptors. 2. Bioluminescence resonance energy transfer (BRET) experiments using V1bR and CRHR1 fused to either Renilla luciferase (Rluc) or yellow fluorescent protein (YFP) at the N-terminus, but not the carboxyl-terminus, revealed specific interaction (BRET50 = 0.39 ± 0.08, V1bR) that was inhibited by untagged V1b or CRHR1 receptors, suggesting homo- and heterodimerization. The BRET data were confirmed by coimmunoprecipitation experiments using fully bioactive receptors tagged at the aminoterminus with c-myc and Flag epitopes, demonstrating specific homodimerization of the V1b receptor and heterodimerization of the V1b receptor with CRHR1 receptors. 3. Heterodimerization between V1bR and CRHR1 is not ligand dependent since stimulation with CRH and AVP had no effect on coimmunoprecipitation. In membranes obtained from cells cotransfected with CRHR1 and V1bR, incubation with the heterologous nonpeptide antagonist did not alter the binding affinity or capacity of the receptor. 4. The data demonstrate that V1bR and CRHR1 can form constitutive homo- and heterodimers and suggests that the heterodimerization does not influence the binding properties of these receptors.

64 citations


Journal ArticleDOI
TL;DR: The identification of the 37 kDa/67 k da laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions opens new avenues for the development of alternative TSE therapies.
Abstract: 1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt–Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrPSc) of the host-encoded prion protein (PrPc). 2. This article reviews the current knowledge on PrPc and PrPSc, prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.

62 citations


Journal ArticleDOI
TL;DR: The role of smoking is examined as a possible cognitive remediator in this psychiatric condition and pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia.
Abstract: Patients with schizophrenia present with deficits in specific areas of cognition. These are quantifiable by neuropsychological testing and can be clinically observable as negative signs. Concomitantly, they self-administer nicotine in the form of cigarette smoking. Nicotine dependence is more prevalent in this patient population when compared to other psychiatric conditions or to non-mentally ill people. The target for nicotine is the neuronal nicotinic acetylcholine receptor (nAChR). There is ample evidence that these receptors are involved in normal cognitive operations within the brain. This review describes neuronal nAChR structure and function, focusing on both cholinergic agonist-induced nAChR desensitization and nAChR up-regulation. The several mechanisms proposed for the nAChR up-regulation are examined in detail. Desensitization and up-regulation of nAChRs may be relevant to the physiopathology of schizophrenia. The participation of several subtypes of neuronal nAChRs in the cognitive processing of non-mentally ill persons and schizophrenic patients is reviewed. The role of smoking is then examined as a possible cognitive remediator in this psychiatric condition. Finally, pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia.

62 citations


Journal ArticleDOI
TL;DR: The aim of this paper is to assess the role of neuroactive steroids in the pathophysiology and treatment of symptoms of schizophrenia, depression, and anxiety disorders, and to place particular emphasis on GABAA receptor modulation.
Abstract: 1. Neuroactive steroids are steroid hormones that exert rapid, nongenomic effects at ligand-gated ion channels. There is increasing awareness of the possible role of these steroids in the pathology and manifestation of symptoms of psychiatric disorders. The aim of this paper is to review the current knowledge of neuroactive steroid functioning in the central nervous system, and to assess the role of neuroactive steroids in the pathophysiology and treatment of symptoms of schizophrenia, depression, and anxiety disorders. Particular emphasis will be placed on GABAA receptor modulation, given the extensive knowledge of the interactions between this receptor complex, neuroactive steroids, and psychiatric illness. 2. A brief description of neuroactive steroid metabolism is followed by a discussion of the interactions of neuroactive steroids with acute and chronic stress and the HPA axis. Preclinical and clinical studies related to psychiatric disorders that have been conducted on neuroactive steroids are also described. 3. Plasma concentrations of some neuroactive steroids are altered in individuals suffering from schizophrenia, depression, or anxiety disorders compared to values in healthy controls. Some drugs used to treat these disorders have been reported to alter plasma and brain concentrations in clinical and preclinical studies, respectively. 4. Further research is warranted into the role of neuroactive steroids in the pathophysiology of psychiatric illnesses and the possible role of these steroids in the successful treatment of these disorders.

Journal ArticleDOI
TL;DR: Data showing an imbalance between antioxidant defences and oxidative damage, particularly in midbrain, liver, and erythrocytes from GA-injected rats, indicate that oxidative stress might be involved in GA toxicity and that the midbrain is the brain structure more susceptible to GA chronic and acute exposition.
Abstract: 1. Glutaric acidemia type I (GA I) is a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase, which leads to tissue accumulation of predominantly glutaric acid (GA) and also 3-hydroxyglutaric acid to a lesser amount. Affected patients usually present progressive cortical atrophy and acute striatal degeneration attributed to the toxic accumulating metabolites.2. In the present study, we determined a number of oxidative stress parameters, namely chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total antioxidant reactivity (TAR), glutathione (GSH) levels, and the activities of catalase and glutathione peroxidase (GPx), in various tissues from rats chronically exposed to GA or to saline (controls). High GA concentrations, similar to those found in glutaric aciduria type I, were induced in the brain by three daily subcutaneous injections of saline-buffered GA (5 micromol/g body weight) to Wistar rats of 5-22 days of life. The parameters were assessed 12 h after the last GA administration in different brain structures, skeletal muscle, heart, liver, erythrocytes, and plasma. The lipid peroxidation parameters chemiluminescence and/or TBA-RS measurements were found significantly increased in midbrain, liver, and erythrocytes of GA-injected rats. The activity of GPx was significantly reduced in midbrain and markedly increased in liver. TAR measurement was significantly reduced in midbrain and liver. Furthermore, GSH levels were reduced in liver and heart. We also investigated the acute in vivo effect of GA administration on the same oxidative stress parameters in cerebral structures and erythrocytes from 22-day-old rats. We found that TBA-RS values were significantly increased in erythrocytes, TAR levels were markedly decreased in midbrain and cerebellum, and GPx activity mildly reduced in the midbrain.3. These data showing an imbalance between antioxidant defences and oxidative damage, particularly in midbrain, liver, and erythrocytes from GA-injected rats, indicate that oxidative stress might be involved in GA toxicity and that the midbrain, where the striatum is located, is the brain structure more susceptible to GA chronic and acute exposition.

Journal ArticleDOI
TL;DR: Evidence is presented that HD patients had higher frequencies of mtDNA deletions in lymphocytes in comparison to the controls, and it is proposed that CAG repeats instability and mutant Htt are causative factor in mtDNA damage.
Abstract: The mitochondrial DNA (mtDNA) may play an essential role in the pathogenesis of the respiratory chain complex activities in neurodegenerative disorders such as Huntington’s disease (HD). Research studies were conducted to determine the possible levels of mitochondrial defect (deletion) in HD patients and consideration of interaction between the expanded Huntingtin gene as a nuclear gene and mitochondria as a cytoplasmic organelle. To determine mtDNA damage, we investigated deletions based in four areas of mitochondrial DNA, in a group of 60 Iranian patients clinically diagnosed with HD and 70 healthy controls. A total of 41 patients out of 60 had CAG expansion (group A). About 19 patients did not show expansion but had the clinical symptoms of HD (group B). MtDNA deletions were classified into four groups according to size; 9 kb, 7.5 kb, 7 kb, and 5 kb. We found one of the four-mtDNA deletions in at least 90% of samples. Multiple deletions have also been observed in 63% of HD patients. None of the normal control (group C) showed mtDNA deletions. The sizes or locations of the deletions did not show a clear correlation with expanded CAG repeat and age in our samples. The study presented evidence that HD patients had higher frequencies of mtDNA deletions in lymphocytes in comparison to the controls. It is thus proposed that CAG repeats instability and mutant Htt are causative factor in mtDNA damage.

Journal ArticleDOI
TL;DR: Results indicate for the first time that pyramidal cell atrophy is present in hippocampus of subjects with bipolar disorder and there were nonsignificant trends for reduction in cell size in both schizophrenic and depressed subjects vs. controls.
Abstract: 1. Schizophrenia and bipolar disorder are neurodevelopmental disorders with significant genetic vulnerabilities. Several trophic genes and/or proteins have been implicated in the causation for both disorders. 2. We hypothesized that these genes and/or proteins may impact neuronal growth in both disorders. 3. Hippocampal tissue sections from CA1 area of schizophrenic, bipolar, depressed, and controls subjects, matched for age, sex, PMI, drug exposure, and brain pH were prepared for cell size determination using the Stanley Medical Research Foundation postmortem brain collection. 4. Quantification of hippocampal CA1 pyramidal neuron size showed a significant 12% reduction in cell size (p < 0.05) in bipolar subjects vs. controls. There were nonsignificant trends for reduction in cell size in both schizophrenic and depressed subjects vs. controls. 5. These results indicate for the first time that pyramidal cell atrophy is present in hippocampus of subjects with bipolar disorder.

Journal ArticleDOI
TL;DR: In this paper, the effects of 3-OHIVA acid and IVG on important parameters of energy metabolism, such as (14)CO(2) production from acetate and the activities of the respiratory chain complexes I-IV, creatine kinase and Na(+), K(+)-ATPase in synaptic plasma membranes from cerebral cortex homogenates of 30-day-old rats.
Abstract: 1. Patients affected by isovaleric acidemia (IVAcidemia) suffer from acute episodes of encephalopathy. However, the mechanisms underlying the neuropathology of this disease are poorly known. The objective of the present study was to investigate the in vitro effects of the metabolites that predominantly accumulate in IVAcidemia, namely isovaleric acid (IVA), 3-hydroxyisovaleric acid (3-OHIVA) and isovalerylglycine (IVG), on important parameters of energy metabolism, such as (14)CO(2) production from acetate and the activities of the respiratory chain complexes I-IV, creatine kinase and Na(+), K(+)-ATPase in synaptic plasma membranes from cerebral cortex homogenates of 30-day-old rats. 2. We observed that 3-OHIVA acid and IVG did not affect all the parameters analyzed. Similarly, (14)CO(2) production from acetate (Krebs cycle activity), the activities of creatine kinase, and of the respiratory chain complexes was not modified by IVA. In contrast, IVA exposition to cortical homogenates provoked a marked inhibition of Na(+), K(+)-ATPase activity. However, this activity was not changed when IVA was directly exposed to purified synaptic plasma membranes, suggesting an indirect effect of this organic acid on the enzyme. Furthermore, pretreatment of cortical homogenates with alpha-tocopherol and creatine totally prevented IVA-induced inhibition on Na(+), K(+)-ATPase activity from synaptic plasma membranes, whereas glutathione (GSH) and the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) did not alter this inhibition. 3. These data indicate that peroxide radicals were probably involved in this inhibitory effect. Since Na(+), K(+)-ATPase is a critical enzyme for normal brain development and functioning and necessary to maintain neuronal excitability, it is presumed that the inhibitory effect of IVA on this activity may be involved in the pathophysiology of the neurological dysfunction of isovaleric acidemic patients.

Journal ArticleDOI
TL;DR: It was confirmed that treatment with LPS stimulated the synthesis of TNF-α in a concentration- and time-dependent manner and the expression of CD14, TLR4 was crucial for the SCs responses to LPS, providing novel mechanisms for the response of SCs to L PS stimulation, through MAPKs signaling pathways.
Abstract: Mitogen-activated protein kinases (MAPKs) are important mediators of cytokine expression and are critically involved in the immune response. The lipopolysaccharide (LPS) of gram-negative bacteria induces the expression of cytokines and proinflammatory genes via the toll-like receptor 4 (TLR4) signaling pathway in diverse cell types. In vivo, Schwann cells (SCs) at the site of injury may also produce tumor necrosis factor-- alpha (TNF-alpha). However, the precise mechanisms of TNF-alpha synthesis are still not clear. The purpose of the present study was to elucidate the underlying molecular mechanisms in the cultured SCs for its ability to activate the MAPKs and TNF-alpha gene, in response to LPS. Using enzyme-linked immunosorbent assay (ELISA), it was confirmed that treatment with LPS stimulated the synthesis of TNF-alpha in a concentration- and time-dependent manner. Intracellular location of TNF-alpha was detected under confocal microscope. Moreover, LPS activated extracellular signal-regulated kinase (ERK1/2), P38 and stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and induced their phosphorylation. LPS-elicited SCs TNF-alpha production was also drastically suppressed by PD98059 (ERK inhibitor), SB202190 (P38 inhibitor), or SP600125 (SAPK/JNK inhibitor). Additionally, the expression of CD14 and TLR4 was examined by RT-PCR. It was demonstrated that the expression of CD14, TLR4 was crucial for the SCs responses to LPS. In conclusion, the results provide novel mechanisms for the response of SCs to LPS stimulation, through MAPKs signaling pathways.

Journal ArticleDOI
TL;DR: Different changes of NPY, L-ENK, and DYN A1–13 in response to such high-intensity exercise depend on the brain region and the time examined, especially, the contents ofNPY in different brain regions continuously remain at a high level after such high -intensity exercise.
Abstract: This study was designed to investigate the effect of acute and chronic high-intensity treadmill exercise on changes in plasma lactate and brain neuropeptide (NPY), leucine-enkephalin (L-ENK), and dynorphin A(1-13) (DYN A(1-13)). Avidin-biotin complex (ABC) immunohistochemistry and image pattern analysis were used to observe the effect of chronic (total 7 weeks) and acute treadmill exercise (an initial speed of 15 m min(-1) gradually increased to 35 m min(-1) with 0 degrees, 20-25 min per day duration) on the changes of NPY, L-ENK, and DYN A(1-13) in different areas of rat brain. Plasma lactate was also measured in response to such exercise. Compared with preexercise control (P < 0.01), plasma lactate concentration significantly increased in the immediate postexercise; but it returned to the normal level soon after the 30 min postexercise. The content of NPY in paraventricular (PVN), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei continued to increase in 0, 30, and 180 min postexercise compared with preexercise control (P < 0.01). The content of L-ENK in caudate-putamen (CPu) significantly increased in the immediate postexercise compared with preexercise control (P < 0.01), but it gradually returned to the normal level after the 180 min postexercise. However, the content of DYN A(1-13) in PVN rose substantially only in 30 min postexercise in comparison with the preexercise control (P < 0.01). Thus, different changes of NPY, L-ENK, and DYN A(1-13) in response to such high-intensity exercise depend on the brain region and the time examined, especially, the contents of NPY in different brain regions continuously remain at a high level after such high-intensity exercise. And this high level might reduce energy expenditure and thus contribute to the stimulation of brain NPY neurons.

Journal ArticleDOI
TL;DR: The conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.
Abstract: The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.

Journal ArticleDOI
TL;DR: The results suggest that markers of GluR6 are unlikely to be associated with autism in the Indian population through population, family-based, and TDT and HHRR approaches.
Abstract: Autism is a neurodevelopmental disorder with early manifestation. It is a multifactorial disorder and several susceptible chromosomal regions for autism are identified through genome scan studies. The gene coding for glutamate receptor 6 (GluR6 or GRIK2) has been suggested as a candidate gene for autism based on its localization in the autism specific region on chromosome 6q21 and the involvement of receptor protein in cognitive functions like learning and memory. Despite its importance, so far no studies have been carried out on possible involvement of GluR6 with autism in the Indian population. Therefore in the present study, we have performed genetic analysis of three markers of GluR6 (SNP1: rs2227281, SNP2: rs2227283, SNP3: rs2235076) for possible association with autism through population, and family-based (TDT and HHRR) approaches. DSM-IV criteria and CARS/ADI-R have been utilized for diagnosis. Genotyping analysis for the SNPs has been carried out in 101 probands with autism spectrum disorder, 180 parents and 152 controls from different regions of India. Since the minor allele frequency of SNP3 was too low, the association studies have been carried out only for SNP1 and SNP2. Even though two earlier studies have shown association of these markers with autism, the present case–control and TDT, as well as HHRR analyses have not demonstrated any biased transmission of alleles or haplotypes to the affected offspring. Thus our results suggest that these markers of GluR6 are unlikely to be associated with autism in the Indian population.

Journal ArticleDOI
TL;DR: It is found that haplogroups H and U are significantly more abundant in AD patients and might act synergistically to increase the penetrance of AD disease.
Abstract: 1. Alzheimer’s disease (AD) is the most common form of dementia in the elderly in which interplay between genes and the environment is supposed to be involved. Mitochondrial DNA (mtDNA) has the only noncoding regions at the displacement loop (D-loop) region that contains two hypervariable segments (HVS-I and HVS-II) with high polymorphism. mtDNA has already been fully sequenced and many subsequent publications have shown polymorphic sites, haplogroups, and haplotypes. Haplogroups could have important implications to understand the association between mutability of the mitochondrial genome and the disease. 2. To assess the relationship between mtDNA haplogroup and AD, we sequenced the mtDNA HVS-I in 30 AD patients and 100 control subjects. We could find that haplogroups H and U are significantly more abundant in AD patients (P = 0.016 for haplogroup H and P = 0.0003 for haplogroup U), Thus, these two haplogroups might act synergistically to increase the penetrance of AD disease.

Journal ArticleDOI
TL;DR: Understanding the impact of alcohol consumption on circadian system and the role of herbal medication on alcohol withdrawal will help in treatment of alcohol induced neurological disorders.
Abstract: (1) Circadian clocks have been localized to discrete sites within the nervous system of several organisms and in mammals to the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The SCN controls and regulates the production and discharge of melatonin (hormonal message of darkness) from the pineal gland via a multisynaptic efferent pathway. The nocturnal rise in melatonin production from serotonin results due to an increased activity of serotonin N-acetyl transferase (NAT). (2) The complex interaction between alcohol and biological clock need to be understood as alcoholism results in various clock linked neuronal disorders especially loss of memory and amnesia like state of consciousness, sleep disorders, insomnia, dementia etc. (3) Serotonin, 5-Hydroxy-tryptamine (5-HT) plays an important role in mediating alcohol’s effects on the brain. Understanding the impact of alcohol consumption on circadian system is a pre-requisite to help in treatment of alcohol induced neurological disorders. We, therefore, studied the effect of ethanol drinking and ethanol withdrawal on daily rhythms of serotonin and its metabolite, 5-hydroxy-indole acetic acid (5-HIAA) in SCN and Pineal of adult male Wistar rats maintained under light-dark (LD, 12:12) conditions. (4) Curcumin is well known for its protective properties such as antioxidant, anti-carcinogenic, anti-viral and anti-infectious etc. Hence, we studied the effect of curcumin on ethanol induced changes on 5-HT and 5-HIAA levels and rhythms in SCN and Pineal. (5) Ethanol withdrawal could not restore either rhythmicity or phases or levels of 5-HT and 5-HIAA. Curcumin administration resulted in partial restoration of daily 5-HT/5-HIAA ratio, with phase shifts in SCN and in Pineal. Understanding the impact of alcohol consumption on circadian system and the role of herbal medication on alcohol withdrawal will help in treatment of alcohol induced neurological disorders.

Journal ArticleDOI
TL;DR: Results showed that expression of mutated Htt-exon 1 could mimic the cellular phenotypes observed in Huntington’s disease and this cell model can be used for screening the agents that would interfere with the apoptotic pathway and aggregate formation.
Abstract: (1) Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by the expansion of polymorphic CAG repeats beyond 36 at exon 1 of huntingtin gene (htt). To study cellular effects by expressing N-terminal domain of Huntingtin (Htt) in specific cell lines, we expressed exon 1 of htt that codes for 40 glutamines (40Q) and 16Q in Neuro2A and HeLa cells. (2) Aggregates and various apoptotic markers were detected at various time points after transfection. In addition, we checked the alterations of expressions of few apoptotic genes by RT-PCR. (3) Cells expressing exon 1 of htt coding 40Q at a stretch exhibited nuclear and cytoplasmic aggregates, increased caspase-1, caspase-2, caspase-8, caspase-9/6, and calpain activations, release of cytochrome c and AIF from mitochondria in a time-dependent manner. Truncation of Bid was increased, while the activity of mitochondrial complex II was decreased in such cells. These changes were significantly higher in cells expressing N-terminal Htt with 40Q than that obtained in cells expressing N-terminal Htt with 16Q. Expressions of caspase-1, caspase-2, caspase-3, caspase-7, and caspase-8 were increased while expression of Bcl-2 was decreased in cells expressing mutated Htt-exon 1. (4) Results presented in this communication showed that expression of mutated Htt-exon 1 could mimic the cellular phenotypes observed in Huntington's disease and this cell model can be used for screening the agents that would interfere with the apoptotic pathway and aggregate formation.

Journal ArticleDOI
TL;DR: Genotype–phenotype correlation revealed that no particular phenotype could be assigned to a particular mutation and even same set of mutations in different patients showed different phenotypes, suggesting high genetic heterogeneity and the absence of a single or a limited number of common founder mutations.
Abstract: Aims We aim to identify the molecular defects in the ATP7B, the causal gene for Wilson disease (WD), in eastern Indian patients and attempt to assess the overall mutation spectrum in India for detection of mutant allele for diagnostic purposes. Methods Patients from 109 unrelated families and their first-degree relatives comprising 400 individuals were enrolled in this study as part of an ongoing project. Genomic DNA was prepared from the peripheral blood of Indian WD patients. PCR was done to amplify the exons and flanking regions of the WD gene followed by sequencing, to identify the nucleotide variants. Results In addition to previous reports, we recently identified eight mutations including three novel (c.3412 + 1G > A, c.1771 G > A, c.3091 A > G) variants, and identified patients with variable phenotype despite similar mutation background suggesting potential role of modifier locus. Conclusions So far we have identified 17 mutations in eastern India including five common mutations that account for 44% of patients. Comparative study on WD mutations between different regions of India suggests high genetic heterogeneity and the absence of a single or a limited number of common founder mutations. Genotype–phenotype correlation revealed that no particular phenotype could be assigned to a particular mutation and even same set of mutations in different patients showed different phenotypes.

Journal ArticleDOI
TL;DR: It is demonstrated that NO increased the permeability and inhibited the P-glycoprotein efflux pump of brain capillary endothelial cells, suggesting that NO plays an inhibitory role in the dynamic regulation of the BBB function.
Abstract: 1. The present study aimed at elucidating the effect of nitric oxide (NO) on blood-brain barrier (BBB) function with mouse brain capillary endothelial (MBEC4) cells.2. Histamine (20-100 microM) evoked NO production (1.6-7 microM) in MBEC4 cells in a dose-dependent manner.3. The permeability coefficient of sodium fluorescein for MBEC4 cells and the cellular accumulation of rhodamine 123 in MBEC4 cells were increased dose-dependently by the addition of NO solutions (14 and 28 microM) every 10 min during a 30-min period.4. The present study demonstrated that NO increased the permeability and inhibited the P-glycoprotein efflux pump of brain capillary endothelial cells, suggesting that NO plays an inhibitory role in the dynamic regulation of the BBB function.

Journal ArticleDOI
TL;DR: It is suggested that an inhibition of brain pericyte-derived TGF-β1 contributes to the occurrence of CsA-induced dysfunction of the BBB.
Abstract: 1. The present study was designed to clarify whether brain pericytes and pericyte-derived transforming growth factor-β1 (TGF-β1) participate in cyclosporin A (CsA)-induced dysfunction of the blood-brain barrier (BBB). 2. The presence of brain pericytes markedly aggravated CsA-increased permeability of MBEC4 cells to sodium fluorescein and accumulation of rhodamine 123 in MBEC4 cells. 3. Exposure to CsA significantly decreased the levels of TGF-β1 mRNA in brain pericytes in pericyte co-cultures. Treatment with TGF-β1 dose-dependently inhibited CsA-induced hyperpermeability and P-glycoprotein dysfunction of MBEC4 cells in pericyte co-cultures. 4. These findings suggest that an inhibition of brain pericyte-derived TGF-β1 contributes to the occurrence of CsA-induced dysfunction of the BBB.

Journal ArticleDOI
TL;DR: Results suggest that the broad overlapping distribution of these enzymes in neurons and glial cells reflects the functional importance of ectonucleotidase actions in the nervous system.
Abstract: Distribution of two enzymes involved in the ectonucleotidase enzyme chain, ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1) and ecto-5′-nucleotidase, was assessed by immunohistochemistry in the rat hippocampus. Obtained results have shown co-expression of the enzymes in the hippocampal region, as well as wide and strikingly similar cellular distribution. Both enzymes were expressed at the surface of pyramidal neurons in the CA1 and CA2 sections, while cells in the CA3 section were faintly stained. The granule cell layer of the dentate gyrus was moderately stained for NTPDase1, as well as for ecto-5′-nucleotidase. Glial association for ecto-5′-nucleotidase was also observed, and fiber tracts were intensively stained for both enzymes. This is the first comparative study of NTPDase1 and ecto-5′-nucleotidase distribution in the rat hippocampus. Obtained results suggest that the broad overlapping distribution of these enzymes in neurons and glial cells reflects the functional importance of ectonucleotidase actions in the nervous system.

Journal ArticleDOI
TL;DR: Evidence is provided that various kynurenine intermediates provoke impairment of brain energy metabolism through their role in regulating glucose uptake and inhibition of 14CO2 production.
Abstract: Growing evidence indicates that some metabolites derived from the kynurenine pathway, the major route of L-tryptophan catabolism, are involved in the neurotoxicity associated with several brain disorders, such as Huntington's disease, Parkinson's disease and Alzheimer's disease, as well as in glutaryl-CoA dehydrogenase deficiency (GAI). Considering that the pathophysiology of the brain damage in these neurodegenerative disorders is not completely defined, in the present study, we investigated the in vitro effect of L-kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3HK), 3-hydroxyanthranilic acid (3HA) and anthranilic acid (AA) on some parameters of energy metabolism, namely glucose uptake, 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate, as well as on the activities of the respiratory chain complexes I-IV and Na+,K+-ATPase activity in cerebral cortex from 30-day-old rats. We observed that all compounds tested, except L-kynurenine, significantly increased glucose uptake and inhibited 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate. In addition, the activities of complexes I, II and IV of the respiratory chain were significantly inhibited by 3HK, while 3HA inhibited complexes I and II activities and AA inhibited complexes I-III activities. Moreover, Na+,K+-ATPase activity was not modified by these kynurenines. Taken together, our present data provide evidence that various kynurenine intermediates provoke impairment of brain energy metabolism.

Journal ArticleDOI
TL;DR: The findings of alterations in GnRH and GABA expression and GnRH neuronal plasticity marker PSA-NCAM as well as changes in ovarian histology suggest that treatment with VPA disrupts hypothalamo-hypophyseal-gonadal axis (HPG) at the level of GnRH pulse generator in hypothalamus.
Abstract: Summary of the aims Women with epilepsy using antiepileptic drug valproic acid (VPA) often suffer from reproductive endocrine disorders, menstrual disorders and polycystic ovaries. Valproic acid exerts anticonvulsive effects via gamma amino butyric acid (GABA) neurotransmitter system, which also acts as a neurochemical regulator of gonadotropin-releasing hormone (GnRH) neurons and suggests possibility of valproic acid mediated interruption in gonadotropin releasing hormone pulse generator in hypothalamus. The aim of this study was to investigate the effects of valproic acid treatment on the expression of gonadotropin releasing hormone, gamma amino butyric acid and polysialylated form of neural cell adhesion molecule (PSA-NCAM) a marker of neuronal plasticity in the median preoptic area (mPOA) and median eminence-arcuate (ME-ARC) region having GnRH neuron cell bodies and axon terminals, respectively. Methods Three-month-old virgin Wistar strain female rats received VPA (i.p.) at a dose of 300 mg/kg once a day for 12 weeks; control group received an equivalent volume of vehicle. GnRH, GABA and PSA-NCAM expressions were studied by immunohistofluorescence technique from mPOA and ME-ARC region of hypothalamus. Ovarian histology was also studied using Mayer’s Haematoxylin-Eosin staining method. Results GnRH and PSA-NCAM staining was much higher in mPOA and ME-ARC region from vehicle treated control proestrous rats, whereas VPA treatment significantly enhanced GABA expression, and reduced both GnRH and PSA-NCAM expression. Mayer’s Haematoxylin-Eosin staining of mid-ovarian sections revealed significantly higher number of ovarian follicular cysts in VPA treated rats. Conclusions Our findings of alterations in GnRH and GABA expression and GnRH neuronal plasticity marker PSA-NCAM as well as changes in ovarian histology suggest that treatment with VPA disrupts hypothalamo-hypophyseal-gonadal axis (HPG) at the level of GnRH pulse generator in hypothalamus.

Journal ArticleDOI
TL;DR: It is indicated that prophylactic treatment with pitavastatin can prevent the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after transient cerebral ischemia.
Abstract: 1. We investigated the immunohistochemical alterations of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus 1 h to 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pitavastatin against the changes of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus after cerebral ischemia in the hippocampus after ischemia. 2. The transient cerebral ischemia was carried out by clamping the carotid arteries with aneurismal clips for 5 min. 3. In the present study, the alteration of HSP 70 and ubiquitin immunoreactivity in the hippocampal CA1 sector was more pronounced than that of BDNF and NGF immunoreactivity after transient cerebral ischemia. In double-labeled immunostainings, BDNF, NGF and ubiquitin immunostaining was observed both in GFAP-positive astrocytes and MRF-1-positive microglia in the hippocampal CA1 sector after ischemia. Furthermore, prophylactic treatment with pitavastatin prevented the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after ischemia. 4. These findings suggest that the expression of stress protein including HSP 70 and ubiquitin may play a key role in the protection against the hippocampal CA1 neuronal damage after transient cerebral ischemia in comparison with the expression of neurotrophic factor such as BDNF and NGF. The present findings also suggest that the glial BDNF, NGF and ubiquitin may play some role for helping surviving neurons after ischemia. Furthermore, our present study indicates that prophylactic treatment with pitavastatin can prevent the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after transient cerebral ischemia. Thus our study provides further valuable information for the pathogenesis after transient cerebral ischemia.

Journal ArticleDOI
TL;DR: Results show a T3 action on the phosphorylating system associated to GFAP and suggest a T2-independent effect of T4 on this cytoskeletal protein, and suggest the effects of TH on glial cell cytoskeleton could be implicated in essential neural events such as brain development.
Abstract: Thyroid hormones (3,5,3′-triiodo-l-thyronine, T3; 3,5,3′,5′-l-tetraiodothyronine, T4; TH) play crucial roles in the growth and differentiation of the central nervous system. In this study, we investigated the actions of TH on proliferation, viability, cell morphology, in vitro phosphorylation of glial fibrillary acidic protein (GFAP) and actin reorganization in C6 glioma cells. We first observe that long-term exposure to TH stimulates cell proliferation without induce cell death. We also demonstrate that after 3, 6, 12, 18, and 24 h treatment with TH, C6 cells and cortical astrocytes show a process-bearing shape. Furthermore, immunocytochemistry with anti-actin and anti-GFAP antibodies reveals that TH induces reorganization of actin and GFAP cytoskeleton. We also observe an increased in vitro 32P incorporation into GFAP recovered into the high-salt Triton insoluble cytoskeletal fraction after 3 and 24 h exposure to 5×10−8 and 10−6 M T3, and only after 24 h exposure to 10−9 M T4. These results show a T3 action on the phosphorylating system associated to GFAP and suggest a T3-independent effect of T4 on this cytoskeletal protein. In addition, C6 cells and astrocytes treated with lysophosphatidic acid, an upstream activator of the RhoA GTPase pathway, totally prevented the morphological alterations induced by TH, indicating that this effect could be mediated by the RhoA signaling pathway. Considering that IF network can be regulated by phosphorylation leading to reorganization of IF filamentous structure and that alterations of the microfilament organization may have important implications in glial functions, the effects of TH on glial cell cytoskeleton could be implicated in essential neural events such as brain development.