scispace - formally typeset
Search or ask a question

Showing papers in "Drug Delivery and Translational Research in 2021"


Journal ArticleDOI
TL;DR: The authors highlight newer promising treatment approaches like nanotraps, nanorobots, nanobubbles, nanofibers, nanodiamonds, nanovaccines, and mathematical modeling for the future.
Abstract: The host immune system is highly compromised in case of viral infections and relapses are very common. The capacity of the virus to destroy the host cell by liberating its own DNA or RNA and replicating inside the host cell poses challenges in the development of antiviral therapeutics. In recent years, many new technologies have been explored for diagnosis, prevention, and treatment of viral infections. Nanotechnology has emerged as one of the most promising technologies on account of its ability to deal with viral diseases in an effective manner, addressing the limitations of traditional antiviral medicines. It has not only helped us to overcome problems related to solubility and toxicity of drugs, but also imparted unique properties to drugs, which in turn has increased their potency and selectivity toward viral cells against the host cells. The initial part of the paper focuses on some important proteins of influenza, Ebola, HIV, herpes, Zika, dengue, and corona virus and those of the host cells important for their entry and replication into the host cells. This is followed by different types of nanomaterials which have served as delivery vehicles for the antiviral drugs. It includes various lipid-based, polymer-based, lipid-polymer hybrid-based, carbon-based, inorganic metal-based, surface-modified, and stimuli-sensitive nanomaterials and their application in antiviral therapeutics. The authors also highlight newer promising treatment approaches like nanotraps, nanorobots, nanobubbles, nanofibers, nanodiamonds, nanovaccines, and mathematical modeling for the future. The paper has been updated with the recent developments in nanotechnology-based approaches in view of the ongoing pandemic of COVID-19.Graphical abstract.

152 citations


Journal ArticleDOI
TL;DR: A review article summarises information on intranasal drug administration for local and systemic delivery, as well as for CNS indications as mentioned in this paper, which describes the anatomical, histological and physiological basis and summarises currently approved drugs for Âadministration via  intra-nasal delivery.
Abstract: Over the past 10 years, the interest in intranasal drug delivery in pharmaceutical R&D has increased. This review article summarises information on intranasal administration for local and systemic delivery, as well as for CNS indications. Nasal delivery offers many advantages over standard systemic delivery systems, such as its non-invasive character, a fast onset of action and in many cases reduced side effects due to a more targeted delivery. There are still formulation limitations and toxicological aspects to be optimised. Intranasal drug delivery in the field of drug development is an interesting delivery route for the treatment of neurological disorders. Systemic approaches often fail to efficiently supply the CNS with drugs. This review paper describes the anatomical, histological and physiological basis and summarises currently approved drugs for administration via intranasal delivery. Further, the review focuses on toxicological considerations of intranasally applied compounds and discusses formulation aspects that need to be considered for drug development.

142 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed current trends and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of Transdermal drug delivery systems and enhancement strategies.
Abstract: Transdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems.

97 citations


Journal ArticleDOI
TL;DR: A critical appraisal of the ophthalmic uses of corticosteroid, routes of administration, drug delivery fundamentals and novel ocular implantable steroid delivery systems, factors influencing side effects, and future perspectives for ocular cortiosteroid therapy are provided.
Abstract: Corticosteroids remain the mainstay of the treatment for various ocular conditions affecting the ocular surface, anterior and posterior segments of the eye due to their anti-inflammatory, anti-oedematous, and anti-neovascularization properties. Prednisolone, prednisolone acetate, dexamethasone, triamcinolone acetonide, fluocinolone acetonide, and loteprednol etabonate are amongst the most widely used ophthalmic corticosteroids. Corticosteroids differ in their activity and potency in the eye due to their inherent pharmacological and pharmaceutical differences. Different routes and regimens are available for ocular administration of corticosteroids. Conventional topical application to the eye is the route of choice when targeting diseases affecting the ocular surface and anterior segment, while periocular, intravitreal, and suprachoroidal injections can be potentially effective for posterior segment diseases. Corticosteroid-induced intraocular pressure elevation and cataract formation remain the most significant local risks following topical as well as systemic corticosteroid administration. Invasive drug administration via intracameral, subconjunctival, and intravitreal injection can enhance ocular bioavailability and minimize dose and dosing frequency of administration, yet may exacerbate ocular side effects of corticosteroids. This review provides a critical appraisal of the ophthalmic uses of corticosteroid, routes of administration, drug delivery fundamentals and novel ocular implantable steroid delivery systems, factors influencing side effects, and future perspectives for ocular corticosteroid therapy.

71 citations


Journal ArticleDOI
TL;DR: One year after the first human case of SARS-CoV-2, two nanomedicine-based mRNA vaccines have been fast-tracked, developed, and have received emergency use authorization throughout the globe with more vaccine approvals on the heels of these first two as mentioned in this paper.
Abstract: One year after the first human case of SARS-CoV-2, two nanomedicine-based mRNA vaccines have been fast-tracked, developed, and have received emergency use authorization throughout the globe with more vaccine approvals on the heels of these first two. Several SARS-CoV-2 vaccine compositions use nanotechnology-enabled formulations. A silver lining of the COVID-19 pandemic is that the fast-tracked vaccine development for SARS-CoV-2 has advanced the clinical translation pathway for nanomedicine drug delivery systems. The laboratory science of lipid-based nanoparticles was ready and rose to the clinical challenge of rapid vaccine development. The successful development and fast tracking of SARS-CoV-2 nanomedicine vaccines has exciting implications for the future of nanotechnology-enabled drug and gene delivery; it demonstrates that nanomedicine is necessary and critical to the successful delivery of advanced molecular therapeutics such as nucleic acids, it is establishing the precedent of safety and the population effect of phase four clinical trials, and it is laying the foundation for the clinical translation of more complex, non-lipid nanomedicines. The development, fast-tracking, and approval of SARS-CoV-2 nanotechnology-based vaccines has transformed the seemingly daunting challenges for clinically translating nanomedicines into measurable hurdles that can be overcome. Due to the tremendous scientific achievements that have occurred in response to the COVID-19 pandemic, years, perhaps even decades, have been streamlined for certain translational nanomedicines.

54 citations


Journal ArticleDOI
TL;DR: In this paper, a review describes features and pathways crucial to the clinical translation of nanomedicine and highlights considerations for early-stage product development, identifying those critical quality attributes of the drug product essential for activity and safety, appropriate analytical methods (physical, chemical, biological) for characterization, important process parameters and adequate pre-clinical models.
Abstract: The field of nanomedicine has significantly influenced research areas such as drug delivery, diagnostics, theranostics, and regenerative medicine; however, the further development of this field will face significant challenges at the regulatory level if related guidance remains unclear and unconsolidated. This review describes those features and pathways crucial to the clinical translation of nanomedicine and highlights considerations for early-stage product development. These include identifying those critical quality attributes of the drug product essential for activity and safety, appropriate analytical methods (physical, chemical, biological) for characterization, important process parameters, and adequate pre-clinical models. Additional concerns include the evaluation of batch-to-batch consistency and considerations regarding scaling up that will ensure a successful reproducible manufacturing process. Furthermore, we advise close collaboration with regulatory agencies from the early stages of development to assure an aligned position to accelerate the development of future nanomedicines.

46 citations


Journal ArticleDOI
TL;DR: In this article, a review describes the recent advances of ultrasound-responsive polymer-based drug delivery systems and illustrates various applications, including the mechanism of ultrasoundinduced drug delivery, typical formulations, and biomedical applications (tumor therapy, disruption of blood-brain barrier, fighting infectious diseases, transdermal drug delivery and enhanced thrombolysis).
Abstract: Ultrasound-responsive polymeric materials have received a tremendous amount of attention from scientists for several decades. Compared to other stimuli-responsive materials (such as UV-, thermal-, and pH-responsive materials), these smart materials are more applicable since they allow more efficient drug delivery and targeted treatment by fairly non-invasive means. This review describes the recent advances of such ultrasound-responsive polymer-based drug delivery systems and illustrates various applications. More specifically, the mechanism of ultrasound-induced drug delivery, typical formulations, and biomedical applications (tumor therapy, disruption of blood–brain barrier, fighting infectious diseases, transdermal drug delivery, and enhanced thrombolysis) are summarized. Finally, a perspective on the future research directions for the development of ultrasound-responsive polymeric materials to facilitate a clinical translation is given.

45 citations


Journal ArticleDOI
TL;DR: In this article, the authors focus on the main challenges of the oral route indicating the strategies undertaken for lipid-based nanocarriers in order to overcome them, and identify their strengths.
Abstract: Lipid-based nanocarriers have gained much interest as carriers of drugs with poor oral bioavailability because of their remarkable advantages like low toxicity, affordable scale-up manufacture, strong biocompatibility or high drug loading efficiency. The potential of these nanocarriers lies in their ability to improve the gastrointestinal stability, solubility and permeability of their cargo drugs. However, achieving efficient oral drug delivery through lipid-based nanocarriers is a challenging task, since they encounter multiple physicochemical barriers along the gastrointestinal tract, e.g. the gastric acidic content, the intestinal mucus layer or the enzymatic degradation, that they must surmount to reach their target. These limitations may be turned into opportunities through a rational design of lipid-based nanocarriers. For that purpose, this review focuses on the main challenges of the oral route indicating the strategies undertaken for lipid-based nanocarriers in order to overcome them. Understanding their shortcomings and identifying their strengths will determine the future clinical success of lipid-based nanocarriers.

44 citations


Journal ArticleDOI
TL;DR: It is concluded that alginate/naringenin hydrogel has positive effect on wound healing process, and it can be used to treat skin injuries in the clinic.
Abstract: Wounds have always been considered as one of the most common physical damages. Therefore, various researches have been conducted to find an appropriate method to improve wound healing process. Among various materials, since hydrogels have appropriate properties for wound healing, they are widely used for this purpose. In this study, to develop a potential wound dressing, different concentrations of naringenin (0%, 1%, 10% and 20%) were incorporated in alginate hydrogel followed by evaluating its characters such as morphology, swelling properties, weight loss, antibacterial activity, releasing profile of the naringenin, hemo-, and cytocompatibility. Finally, to evaluate the effect of developed hydrogels on wound healing, the full-thickness dermal wound model in rat was used. Our results provided that the prepared hydrogels have appropriate porosity (86.7 ± 5.3%) with the interconnected pores. Moreover, weight loss assessment confirmed that fabricated hydrogels have suitable biodegradability (about 89% after 14 days). MTT assay also revealed the positive effect of hydrogels on cell viabilities, and they have no toxicity effect on cells. In vivo study indicated that the prepared hydrogels had better wound closure than the gauze-treated wound (the control), and alginate/20% naringenin group had the best wound closure among other groups. All in all, this study concluded that alginate/naringenin hydrogel has positive effect on wound healing process, and it can be used to treat skin injuries in the clinic.

44 citations


Journal ArticleDOI
TL;DR: An overview on recent advances adopted for protein and peptide drug delivery, focusing on oral and transdermal routes is provided, followed by an emphasis on two recent approaches adopted as delivery systems, namely aquasomes and microneedles.
Abstract: Proteins and peptides have a great potential as therapeutic agents; they have higher efficiency and lower toxicity, compared to chemical drugs. However, their oral bioavailability is very low; also, the transdermal peptide delivery faces absorption limitations. Accordingly, most of proteins and peptides are administered by parenteral route, but there are many problems associated with this route such as patient discomfort, especially for pediatric use. Thus, it is a great challenge to develop drug delivery systems for administration of proteins and peptides by routes other than parenteral one. This review provides an overview on recent advances adopted for protein and peptide drug delivery, focusing on oral and transdermal routes. This is followed by an emphasis on two recent approaches adopted as delivery systems for protein and peptide drugs, namely aquasomes and microneedles. Aquasomes are nanoparticles fabricated from ceramics developed to enhance proteins and peptides stability, providing an adequate residence time in circulation. It consists of ceramic core coated with poly hydroxyl oligomer, on which protein and peptide drug can be adsorbed. Aquasomes preparation, characterization, and application in protein and peptide drug delivery are discussed. Microneedles are promising transdermal approach; it involves creation of micron-sized pores in the skin for enhancing the drug delivery across the skin, as their length ranged between 150 and 1500 μm. Types of microneedles with different drug delivery mechanisms, characterization, and application in protein and peptide drug delivery are discussed.

39 citations


Journal ArticleDOI
TL;DR: Iontophoresis technology, which uses a small current to improve drug permeation through skin, is one of the effective ways to circumvent the stratum corneum, and it not only provides a more efficient, noninvasive, and patient-friendly method of drug delivery but also widens the scope of drugs for transdermal delivery as discussed by the authors.
Abstract: Transdermal drug delivery is limited by the stratum corneum of skin, which blocks most molecules, and thus, only few molecules with specific physicochemical properties (molecular weight < 500 Da, adequate lipophilicity, and low melting point) are able to penetrate the skin. Recently, various technologies have been developed to overcome the strong barrier properties of stratum corneum. Iontophoresis technology, which uses a small current to improve drug permeation through skin, is one of the effective ways to circumvent the stratum corneum. This approach not only provides a more efficient, noninvasive, and patient-friendly method of drug delivery but also widens the scope of drugs for transdermal delivery. In this review, the mechanisms underlying iontophoresis and affecting factors are outlined. The focus will be on the latest advancements in iontophoretic transdermal drug delivery and application of iontophoresis with other enhancing technologies. The challenges of this technology for drug administration have also been highlighted, and some iontophoretic systems approved for clinical use are described.

Journal ArticleDOI
TL;DR: LGP-SLNs exhibited relative bioavailability of 300% and better reduction in glucose levels in comparison with LGP-SOL in rats, and can be considered promising carriers for oral delivery but clinical studies are required to confirm the proof of concept.
Abstract: Linagliptin (LGP), a novel anti-diabetic drug, is a DPP-4 inhibitor used in the treatment of type II diabetes. One of the major disadvantages of LGP is its low oral bioavailability (29.5%) due to first-pass metabolism and P-gp efflux. In an attempt to increase the oral bioavailability, LGP solid lipid nanoparticles (LGP-SLNs) were developed with poloxamer 188 and Tween 80 as P-gp inhibitors. LGP-SLNs were formulated using palmitic acid, poloxamer 188 and Tween 80 as lipid, surfactant and co-surfactant, respectively, by hot homogenization ultrasonication method and optimized using 32 full factorial designs. Particle size, entrapment efficiency (%EE) and drug release at 24 h were evaluated as responses. An optimized batch of LGP-SLNs (L12) was evaluated for intestinal transport of LGP by conducting in situ single-pass intestinal perfusion (SPIP), everted gut sac and Caco-2 permeability study. The pharmacokinetic and pharmacodynamic evaluation of L12 was carried out in albino Wistar rats. The mean particle size, polydispersity index, zeta potential and %EE of L12 were found to be 225.96 ± 2.8 nm, 0.180 ± 0.034, − 5.4 ± 1.07 mV and 73.8 ± 1.73%, respectively. %CDR of 80.96 ± 3.13% was observed in 24 h. The permeability values of LGP-SLNs in the absorptive direction were 1.82-, 1.76- and 1.74-folds higher than LGP-solution (LGP-SOL) in SPIP, everted gut sac and Caco-2 permeability studies, respectively. LGP-SLNs exhibited relative bioavailability of 300% and better reduction in glucose levels in comparison with LGP-SOL in rats. The enhanced oral bioavailability exhibited by LGP-SLNs bioavailability may be due to P-gp efflux inhibition and lymphatic targeting. Improved bioabsorption can cause reduction in dose, dose-related side effects and frequency of administration. Thus, LGP-SLNs can be considered promising carriers for oral delivery but clinical studies are required to confirm the proof of concept. Graphical abstract

Journal ArticleDOI
TL;DR: A comprehensive exposition concerning in vivo-tested CD and CD-based delivery systems for anticancer therapy is undertaken, and the authors address the multivalent functionalities of CD- based delivery systems, namely the incorporation of active target ligands, stimuli-responsiveness components, surface functionalization, or further associations with other delivery systems aiming at improved in vivo anticancer therapies.
Abstract: Cyclodextrins (CDs) are naturally occurring macromolecules widely used as excipients on pharmaceutical formulations, evidencing a large spectrum of applications in the pharmaceutical industry. Their unique ability to act as molecular containers by entrapping a wide range of guest molecules in their internal cavity makes them a remarkable excipient to improve drug apparent solubility, stability, and bioavailability, and a valuable tool for the assembly of new drug delivery systems. These features are especially useful when it comes to chemotherapy, as most of the anticancer drugs present both low permeability and reduced water solubility. Therefore, guest-host inclusion complexes offer several potential advantages not only regarding the improvement of pharmaceutical formulations characteristics but also considering the reduction of drug toxic side effects. The combination of CDs with additional technologies and materials constitutes a potential strategy towards the development of advanced and multifunctional CD-based delivery systems. Paclitaxel, curcumin, camptothecin, doxorubicin, and cisplatin are among the most studied molecules with anticancer activities and have been successfully incorporated in such nanosystems. Exciting results using CDs and CD-based delivery systems have been obtained so far, paving the way towards the attainment of intelligent delivery systems to possibly address cancer therapeutics' unmet needs. In this review, a comprehensive exposition concerning in vivo-tested CD and CD-based delivery systems for anticancer therapy is undertaken. Additionally, the authors address the multivalent functionalities of CD-based delivery systems, namely the incorporation of active target ligands, stimuli-responsiveness components, surface functionalization, or further associations with other delivery systems, aiming at improved in vivo anticancer therapies. Graphical abstract.

Journal ArticleDOI
TL;DR: It is demonstrated that macrophage targeting and pH-sensitive SLNs can be used as a promising platform for the latent tuberculosis infection.
Abstract: Mycobacterium tuberculosis (MTB) is one of the most threatening pathogens for its latent infection in macrophages. The intracellular MTB isolated itself from drugs and could spread via macrophages. Therefore, a mannose-modified macrophage-targeting solid lipid nanoparticle, MAN-IC-SLN, loading the pH-sensitive prodrug of isoniazid (INH), was designed to treat the latent tuberculosis infection. The surface of SLNs was modified by a synthesized 6-octadecylimino-hexane-1,2,3,4,5-pentanol (MAN-SA) to target macrophages, and the modified SLNs showed a higher cell uptake in macrophages (97.2%) than unmodified SLNs (42.4%). The prodrug, isonicotinic acid octylidene-hydrazide (INH-CHO), was synthesized to achieve the pH-sensitive release of INH in macrophages. The INH-CHO-loaded SLNs exhibited a pH-sensitive release profile and accomplished a higher accumulated release in pH 5.5 media (82.63 ± 2.12%) compared with the release in pH 7.4 media (58.83 ± 3.84%). Mycobacterium smegmatis was used as a substitute for MTB, and the MAN-IC-SLNs showed a fourfold increase of intracellular antibiotic efficacy and enhanced macrophage uptake because of the pH-sensitive degradation of INH-CHO and MAN-SA in SLNs, respectively. For the in vivo antibiotic efficacy test, the SLNs group displayed an 83% decrease of the colony-forming unit while the free INH group only showed a 60% decrease. The study demonstrates that macrophage targeting and pH-sensitive SLNs can be used as a promising platform for the latent tuberculosis infection.

Journal ArticleDOI
TL;DR: A comprehensive overview of the current state of treatment options for the therapy of infected wounds can be found in this article, where a special focus is set on delivery systems for antimicrobials ranging from semi-solid and liquid formulations over wound dressings to more advanced carriers such as nano-sized particulate systems, vesicular systems, electrospun fibers, and microneedles, which are discussed regarding their potential for effective therapy of wound infections.
Abstract: In recent years, the incidence of infected wounds is steadily increasing, and so is the clinical as well as economic interest in effective therapies. These combine reduction of pathogen load in the wound with general wound management to facilitate the healing process. The success of current therapies is challenged by harsh conditions in the wound microenvironment, chronicity, and biofilm formation, thus impeding adequate concentrations of active antimicrobials at the site of infection. Inadequate dosing accuracy of systemically and topically applied antibiotics is prone to promote development of antibiotic resistance, while in the case of antiseptics, cytotoxicity is a major problem. Advanced drug delivery systems have the potential to enable the tailor-made application of antimicrobials to the side of action, resulting in an effective treatment with negligible side effects. This review provides a comprehensive overview of the current state of treatment options for the therapy of infected wounds. In this context, a special focus is set on delivery systems for antimicrobials ranging from semi-solid and liquid formulations over wound dressings to more advanced carriers such as nano-sized particulate systems, vesicular systems, electrospun fibers, and microneedles, which are discussed regarding their potential for effective therapy of wound infections. Further, established and novel models and analytical techniques for preclinical testing are introduced and a future perspective is provided.

Journal ArticleDOI
TL;DR: In this paper, the current and future trends of automated approaches to nanomedicine synthesis are discussed and compared with traditional methods, as well as the advantages of combining automation with artificial intelligence.
Abstract: The field of nanotechnology and personalised medicine is undergoing drastic changes in the approach and efficiency of experimentation. The COVID-19 pandemic has spiralled into mass stagnation of major laboratories around the globe and led to increased investment into remote systems for nanoparticle experiments. A significant number of laboratories now operate using automated systems; however, the extension to nanoparticle preparation and artificial intelligence-dependent databases holds great translational promise. The strive to combine automation with artificial intelligence (AI) grants the ability to optimise targeted therapeutic nanoparticles for unique cell types and patients. In this perspective, the current and future trends of automated approaches to nanomedicine synthesis are discussed and compared with traditional methods.

Journal ArticleDOI
TL;DR: F fluorination substantially improved the performance of PEI for siRNA delivery by reducing the cytotoxicity to MDA-MB-231 cells and enabled the major accumulation of siRNA polyplex nanoparticles in the liver while non-fluorinated PEI delivered siRNA nanoparticles mainly to the lungs after intravenous administration to mice.
Abstract: Polyethyleneimine (PEI) has been extensively investigated as an efficient carrier for nucleic acid delivery. Yet, it suffers from a high toxicity profile that hinders clinical translation. Fluorination has proven to be a valid approach to reduce the cytotoxicity of PEI and improve the in vitro siRNA delivery potency. Hydrophobicity and lipophobicity can be controllably introduced into the side chains of PEI. However, the effect of fluorination on siRNA delivery in vivo, particularly the biodistribution of siRNA polyplex nanoparticles with fluorinated PEIs, has not been extensively explored. Here, we introduce two series of fluorinated PEIs via amidation with ethyl trifluoroacetate and perfluorobutyryl chloride. Fluorination substantially improved the performance of PEI for siRNA delivery by reducing the cytotoxicity to MDA-MB-231 cells. Importantly, fluorinated PEI enabled the major accumulation of siRNA polyplex nanoparticles in the liver while non-fluorinated PEI delivered siRNA nanoparticles mainly to the lungs after intravenous administration to mice. It is envisioned that fluorination may be an important general strategy for lowering toxicity of cationic polymers, and that the fluorination-induced alteration of biodistribution may be applicable for improved delivery to different organs. Graphical abstract.

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the application and design considerations of chitosan-composed systems for the treatment of infectious diseases, looking forward to providing the idea of infectious disease therapy.
Abstract: Infectious diseases, such as the coronavirus disease-19, SARS virus, Ebola virus, and AIDS, threaten the health of human beings globally. New viruses, drug-resistant bacteria, and fungi continue to challenge the human efficacious drug bank. Researchers have developed a variety of new antiviral and antibacterial drugs in response to the infectious disease crisis. Meanwhile, the development of functional materials has also improved therapeutic outcomes. As a natural material, chitosan possesses good biocompatibility, bioactivity, and biosafety. It has been proven that the cooperation between chitosan and traditional medicine greatly improves the ability of anti-infection. This review summarized the application and design considerations of chitosan-composed systems for the treatment of infectious diseases, looking forward to providing the idea of infectious disease therapy.

Journal ArticleDOI
TL;DR: Despite the promising potential of microneedle arrays for cancer therapy and diagnosis, several limitations have impeded their therapeutic efficacy and real-time applicability that are addressed in this paper.
Abstract: Regarding the increasing prevalence of cancer throughout the globe, the development of novel alternatives for conventional therapies is inevitable to circumvent limitations such as low efficacy, complications, and high cost. Recently, microneedle arrays (MNs) have been introduced as a novel, minimally invasive, and low-cost approach. MNs can delivery both small molecule and macromolecular drugs or even nanoparticles (NPs) to the tumor tissue in a safe and controlled manner. Relying on the recent promising outcomes of MNs in transdermal delivery of anticancer agents, this review is aimed to summarize constituent materials, fabrication methods, advantages, and limitations of different types of MNs used in cancer therapy applications. This review paper also presents the potential use of MNs in transdermal delivery of NPs for effective chemotherapy, gene therapy, immunotherapy, photodynamic, and photothermal therapy. Additionally, MNs are currently explored as routine point-of-care health monitoring devices for transdermal detection of cancer biomarkers or physiologically relevant analytes which will be addressed in this paper. Despite the promising potential of MNs for cancer therapy and diagnosis, several limitations have impeded their therapeutic efficacy and real-time applicability that are addressed in this paper.

Journal ArticleDOI
TL;DR: This microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear and is developed using a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated coppermicroneedles with these attributes.
Abstract: Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Graphical Abstract Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle.

Journal ArticleDOI
TL;DR: In-vitro efficacy of afatinib-loaded PLGA nanoparticles as inhalable NSCLC therapy is established, which will be of great significance when designing preclinical and clinical studies.
Abstract: Afatinib (AFA) is a potent aniline–quinazoline derivative, approved by the Food and Drug Administration (FDA) in 2013, as a first-line treatment for metastatic non-small cell lung cancer (NSCLC). However, its clinical application is highly limited by its poor solubility, and consequently low bioavailability. We hypothesize that loading of AFA into biodegradable PLGA nanoparticles for localized inhalational drug delivery will be instrumental in improving therapeutic outcomes in NSCLC patients. Formulated AFA nanoparticles (AFA-NP) were evaluated for physicochemical properties (particle size: 180.2 ± 15.6 nm, zeta potential: − 23.1 ± 0.2 mV, % entrapment efficiency: 34.4 ± 2.3%), formulation stability, in-vitro aerosol deposition behavior, and anticancer efficacy. Stability studies revealed the physicochemical stability of AFA-NP. Moreover, AFA-NP exhibited excellent inhalable properties (mass median aerodynamic diameter (MMAD): 4.7 ± 0.1 μm; fine particle fraction (FPF): 77.8 ± 4.3%), indicating efficient particle deposition in deep lung regions. With respect to in-vitro drug release, AFA-NP showed sustained drug release with cumulative release of 56.8 ± 6.4% after 48 h. Cytotoxic studies revealed that encapsulation of AFA into PLGA nanoparticles significantly enhanced its cytotoxic potential in KRAS-mutated NSCLC cell lines (A549, H460). Cellular uptake studies revealed enhanced internalization of coumarin-loaded nanoparticles compared to plain coumarin in A549. In addition, 3D tumor spheroid studies demonstrated superior efficacy of AFA-NP in tumor penetration and growth inhibition. To conclude, we have established in-vitro efficacy of afatinib-loaded PLGA nanoparticles as inhalable NSCLC therapy, which will be of great significance when designing preclinical and clinical studies.

Journal ArticleDOI
TL;DR: In this paper, an orally ingestible robotic pill (RP) was developed for drug delivery, which protects the biotherapeutic drug payload from digestion in the GI tract and auto-injects it into the wall of the small intestine as a safe, pain-free injection since the intestines are insensate to sharp stimuli.
Abstract: Biotherapeutics are highly efficacious, but the pain and inconvenience of chronic injections lead to poor patient compliance and compromise effective disease management. Despite innumerable attempts, oral delivery of biotherapeutics remains unsuccessful due to their degradation in the gastrointestinal (GI) environment and poor intestinal absorption. We have developed an orally ingestible robotic pill (RP) for drug delivery, which protects the biotherapeutic drug payload from digestion in the GI tract and auto-injects it into the wall of the small intestine as a safe, pain-free injection since the intestines are insensate to sharp stimuli. The payload is delivered upon inflation of a balloon folded within the RP, which deflates immediately after drug delivery. Here we present results from two clinical studies demonstrating the safety, tolerability and performance of the RP in healthy humans. In the first study, three versions of the RP (A, B and C) were evaluated, which were identical in all respects except for the diameter of the balloon. The RP successfully delivered a biotherapeutic (octreotide) in 3 out of 12 subjects in group A, 10 out of 20 subjects in group B and 16 out of 20 subjects in group C, with a mean bioavailability of 65 ± 9% (based on successful drug deliveries in groups A and B). Thus, reliability of drug delivery with the RP ranged from 25 to 80%, with success rate directly related to balloon size. In a separate study, the deployment of the RP was unaffected by fed or fasting conditions suggesting that the RP may be taken with or without food. These promising clinical data suggest that biotherapeutics currently administered parenterally may be safely and reliably delivered via this versatile, orally ingestible drug delivery platform.

Journal ArticleDOI
TL;DR: Out of various techniques, the thermal ablation techniques involving chemicals, heating elements, lasers, and radiofrequency are proved to be more effective in terms of delivering the drug across the skin by disrupting the stratum corneum (SC).
Abstract: Traditionally, the skin is considered as a protective barrier which acts as a highly impermeable region of the human body. But in recent times, it is recognized as a specialized organ that aids in the delivery of a wide range of drug molecules into the skin (intradermal drug delivery) and across the skin into systemic circulation (transdermal drug delivery, TDD). The bioavailability of a drug administered transdermally can be improved by several penetration enhancement techniques, which are broadly classified into chemical and physical techniques. Application of mentioned techniques together with efforts of various scientific and innovative companies had made TDD a multibillion dollar market and an average of 2.6 new transdermal drugs are being approved each year. Out of various techniques, the thermal ablation techniques involving chemicals, heating elements, lasers, and radiofrequency (RF) are proved to be more effective in terms of delivering the drug across the skin by disrupting the stratum corneum (SC). The reason behind it is that the thermal ablation technique resulted in improved bioavailability, quick treatment and fast recovery of the SC, and more importantly it does not cause any damage to underlying dermis layer. This review article mainly discussed about various thermal ablation techniques with commercial products and patents in each classes, and their safety aspects. This review also briefly presented anatomy of the skin, penetration pathways across the skin, and different generations of TDD. Graphical abstract.

Journal ArticleDOI
TL;DR: It is suggested that SONEL could be an effective formulation for treatment of diabetic wound infection by controlling infection and improving the healing process.
Abstract: The aim of this study was to develop a novel oil-in-water (o/w) nanoemulsion gel containing levofloxacin for enhanced topical efficacy. Average particle size of sesame oil nanoemulsion without (SONE) and containing levofloxacin (SONEL) was found as 25.2 and 26.3 nm, respectively. Results from scratch test showed that SONEL had better proliferation effect in comparison with negative control. Treated animals with SONEL showed significant reduction in period of epithelialization, wound contraction, and number of inflammatory cells among all groups. Also, SONEL-treated group had the greatest collagen synthesis. Immunohistochemical analysis showed high intensity of CD31 and TGF-β at wound site of treatment groups with SONEL on day 12 post-treatment (P < 0.05). Skin irritation test demonstrated safety of SONEL gel for skin topical application. In conclusion, our studies suggest that SONEL could be an effective formulation for treatment of diabetic wound infection by controlling infection and improving the healing process. Graphical Abstract .

Journal ArticleDOI
TL;DR: In vivo evaluation of a nanoformulation of AmB and piperine (Pip) for therapeutic efficacy in golden hamster- L. donovani model demonstrated enhanced drug bioavailability, non-nephrotoxic nature, and potential antileishmanial activity with up to 96% inhibition of the parasite.
Abstract: Amphotericin B (AmB) exhibits potential antileishmanial activity, with only a little rate of recurrence. However, low bioavailability and severe nephrotoxicity are among the major shortcomings of AmB-based therapy. Various AmB nanoformulations have been developed, which to an extent, have reduced its toxicity and increased the drug efficacy. To further reduce the nonspecific tissue distribution and the cost of the treatment, the current AmB-based formulations require additional improvements. Combination of natural bioenhancers with AmB is expected to further increase its bioavailability. Therefore, we developed a nanoformulation of AmB and piperine (Pip), a plant alkaloid, known to enhance the bioavailability of various drugs, by entrapping them in guar gum, a macrophage targeting polymer. Owing to the ease of oral delivery, these nanoparticles (NPs) were coated with eudragit to make them suitable for oral administration. The formulated eudragit-coated AmB and Pip-loaded NPs (Eu-HDGG-AmB-Pip-NPs) exhibited controlled release of the loaded therapeutic agents and protected the drug from acidic pH. These NPs exhibited effective suppression of growth of both promastigotes and amastigotes of Leishmania donovani parasite under in vitro. In vivo evaluation of these NPs for therapeutic efficacy in golden hamster-L. donovani model demonstrated enhanced drug bioavailability, non-nephrotoxic nature, and potential antileishmanial activity with up to 96% inhibition of the parasite. Graphical abstract.

Journal ArticleDOI
Juhyun Park1, Yeu-Chun Kim1
TL;DR: The suggested microneedle-mediated drug delivery system not only inhibits the human keloid fibroblasts by delivering drugs effectively into the keloids but also has the feasibility to self-administer without pain.
Abstract: Keloids are induced by skin injuries such as surgeries, skin piercings, burns, and trauma. The intra-lesional injection of 5-fluorouracil (5-FU) is a promising therapy to treat keloid. However, local 5-FU injections have caused several side effects such as pain at administration and hyperpigmentation. This study suggests a safer and more effective 5-FU delivery system. We used microneedles to treat keloid because this method has the feasibility of self-administration without pain. In this study, 5-FU-loaded carboxymethyl chitosan (CMC) nanoparticles were prepared and characterized by various analytical methods and then coated on stainless solid microneedles. The blank CMC nanoparticles caused an increase in cell viability on human normal fibroblasts to 150%. In particular, the 5-FU-loaded CMC nanoparticles showed a significant inhibitory effect on the human keloid fibroblast to 16%. The intercellular uptake of the 5-FU-loaded CMC nanoparticles was observed on both human normal and keloid fibroblasts by using a confocal microscope. In addition, it was found that the nanoparticles showed an inhibition of TGF-β1 by ELISA. For topical drug delivery, it was confirmed that the nanoparticles coated onto the microneedles were dissolved and diffused at the administration site in the porcine dorsal skin model. According to these results, the suggested microneedle-mediated drug delivery system not only inhibits the human keloid fibroblasts by delivering drugs effectively into the keloids but also has the feasibility to self-administer without pain. Therefore, this new system including 5-FU-loaded CMC nanoparticles and microneedles has the potential to treat keloid scars. Graphical abstract.

Journal ArticleDOI
TL;DR: The results suggest the enhanced efficacy of the developed formulation strategy to overcome the biofilm-mediated antimicrobial resistance.
Abstract: Biofilm mediated bacterial infections are the key factors in the progression of infectious diseases due to the evolution of antimicrobial resistance. Traditional therapy involving antibiotics is not adequate enough for treatment of such infections due to the increased resistance triggered by biofilm. To overcome this challenge, we developed anacardic acid (Ana) loaded solid lipid nanoparticles (SLNs), further coated with chitosan and DNase (Ana-SLNs-CH-DNase). The DNase coating was hypothesized to degrade the e-DNA, while chitosan was coated to yield positively charged SLNs with additional adhesion to biofilms. The SLNs were developed using homogenization method and further evaluated for particle size, polydispersity index, zeta potential, and entrapment efficiency. Drug excipient compatibility was confirmed by using FT-IR study, while encapsulation of Ana in SLNs was confirmed by X-ray diffraction study. The SLNs demonstrated sustained release for up to 24 h and excellent stability at room temperature for up to 3 months. The developed SLNs were found non-toxic against human immortalized keratinocyte (HaCaT) cells while demonstrated remarkably higher antimicrobial efficacy against Staphylococcus aureus. Excellent effect of the developed SLNs on minimum biofilm inhibition concentration and minimum biofilm eradication concentration further confirmed the superiority of the developed formulation strategy. A significant (p < 0.05) reduction in biofilm thickness and biomass, as confirmed by confocal laser scanning microscopy, was observed in the case of developed SLNs in comparison with control. Cumulatively, the results suggest the enhanced efficacy of the developed formulation strategy to overcome the biofilm-mediated antimicrobial resistance. Graphical abstract.

Journal ArticleDOI
TL;DR: In vivo anti-tumor studies revealed that TPGS-coated docetaxel-loaded liposomes had outstanding anti-Tumor efficacy in an A549/DDP xenograft model and showed significant advantages in vitro and in vivo.
Abstract: In this study, D-alpha-tocopheryl polyethylene glycol-1000 succinate (TPGS)-coated docetaxel-loaded liposomes were developed to reverse multidrug resistance (MDR) and enhance lung cancer therapy. Evaluations were performed using human lung cancer A549 and resistant A549/DDP cells. The reversal multidrug resistant effect was assessed by P-gp inhibition assay, cytotoxicity, cellular uptake, and apoptosis assay. The tumor xenograft model was built by subcutaneous injection of A549/DDP cells in the right dorsal area of nude mice. The tumor volumes and body weights were measured every other day. The TPGS-coated liposomes showed a concentration- and time-dependent cytotoxicity and significantly enhanced the cytotoxicity of docetaxel in A549/DDP cells. Confocal laser scanning images indicated that higher concentrations of coumarin-6 were successfully delivered into the cytoplasm, and the TPGS-coated liposomes enhanced intracellular drug accumulation by inhibiting overexpressed P-glycoprotein. The TPGS-coated liposomes were shown to induce apoptosis. Furthermore, in vivo anti-tumor studies revealed that TPGS-coated docetaxel-loaded liposomes had outstanding anti-tumor efficacy in an A549/DDP xenograft model. The TPGS-coated liposomes, compared with PEG-coated liposomes, showed significant advantages in vitro and in vivo. The TPGS-coated liposomes were able to reverse MDR and enhance lung cancer therapy. Graphical abstract .

Journal ArticleDOI
TL;DR: In this article, after a recall of the mode of action of vaccines and the types of vaccines currently available, the authors analyze the past, present, and future of vaccine formulation, and compare the advantages and disadvantages of injectable solutions, nanovaccines, and microneedles in terms of efficacy, stability and patient-friendly design.
Abstract: The current situation, heavily influenced by the ongoing pandemic, puts vaccines back into the spotlight. However, the conventional and traditional vaccines present disadvantages, particularly related to immunogenicity, stability, and storage of the final product. Often, such products require the maintenance of a "cold chain," impacting the costs, the availability, and the distribution of vaccines. Here, after a recall of the mode of action of vaccines and the types of vaccines currently available, we analyze the past, present, and future of vaccine formulation. The past focuses on conventional formulations, the present discusses the use of nanoparticles for vaccine delivery and as adjuvants, while the future presents microneedle patches as alternative formulation and administration route. Finally, we compare the advantages and disadvantages of injectable solutions, nanovaccines, and microneedles in terms of efficacy, stability, and patient-friendly design. Different approaches to vaccine formulation development, the conventional vaccine formulations from the past, the current development of lipid nanoparticles as vaccines, and the near future microneedles formulations are discussed in this review.

Journal ArticleDOI
TL;DR: The developed tyramine-modified gellan gum (Ty-GG) hydrogels represent a promising DDS and a reliable alternative to traditional treatments in patients with RA and demonstrated to have a more effective therapeutic effect when compared with the administration of betamethasone alone.
Abstract: Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint synovial inflammation, as well as cartilage and bone tissue destruction. Current strategies for the treatment of RA can reduce joint inflammation, but the treatment options still represent stability concerns since they are not sufficient and present a fast clearing. Thus, several drug delivery systems (DDS) have been advanced to tackle this limitation. Injectable gellan gum (GG) hydrogels, reduced by physical crosslinking methods, also being proposed as DDS, but this kind of crosslinking can produce hydrogels that become weaker in physiological conditions. Nevertheless, enzymatic crosslinking emerged as an alternative to increase mechanical strength, which can be adjusted by the degree of enzymatic crosslinking. In this study, tyramine-modified gellan gum (Ty-GG) hydrogels were developed via horseradish peroxidase (HRP) crosslinking; and betamethasone was encapsulated within, to increase the specificity and safety in the treatment of patients with RA. Physicochemical results showed that it was possible to modify GG with tyramine, with a degree of substitution of approximately 30%. They showed high mechanical strength and resistance, presenting a controlled betamethasone release profile over time. Ty-GG hydrogels also exhibited no cytotoxic effects and do not negatively affected the metabolic activity and proliferation of chondrogenic primary cells. Furthermore, the main goal was achieved since betamethasone-loaded Ty-GG hydrogels demonstrated to have a more effective therapeutic effect when compared with the administration of betamethasone alone. Therefore, the developed Ty-GG hydrogels represent a promising DDS and a reliable alternative to traditional treatments in patients with RA.